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Abstract

To explain the size effect found in the testing of plastic behavior of metals on the micrometer scale, four theories of
strain-gradient plasticity, representing generalizations of the deformation theory of plasticity, have been developed
since 1993—the pioneering original theory of Fleck and Hutchinson in two subsequent versions, the mechanism-based
strain-gradient (MSQ) plasticity of Gao and co-workers (the first theory anchored in the concept of geometrically
necessary dislocations), and Gao and Huang’s recent update of this theory under the name Taylor-based nonlocal
theory. Extending a recent study of Bazant in 2000 focused solely on the MSG theory, the present paper establishes the
small-size asymptotic scaling laws and load-deflection diagrams of all the four theories. The scaling of the plastic
hardening modulus for the theory of Acharya and Bassani, based on the incremental theory of plasticity, is also de-
termined. Certain problematic asymptotic features of the existing theories are pointed out and some remedies proposed.
The advantages of asymptotic matching approximations are emphasized and an approximate formula of the asymptotic
matching type is proposed. The formula is shown to provide a good description of the experimental and numerical
results for the size range of the existing experiments (0.5-100 pm).
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Asymptotic; Strain; Plasticity; Modulus

1. Introduction

Testing of micro-indentation, micro-torsion and micro-bending of copper and other metals on the mi-
crometer scale (see, e.g., in Fleck et al., 1994; Gao et al., 1999a,b), conducted in the early 1990s, revealed a
size effect and a significantly stiffer response than predicted by the classical theory of plasticity calibrated on
the macro-scale. A similar stiffening was suggested by experiments demonstrating a great increase of yield
strength and plastic hardening in nanocomposites (Lloyd, 1994; Kiser et al., 1996). It became clear that the
differences, attributed to the effect of geometrically necessary dislocations (Gao et al., 1999a,b), called for a
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new theory. Development of such a theory was pioneered by Fleck and Hutchinson (1993, 1997). They
generalized the deformation theory of plasticity by incorporating into it, in a properly invariant manner,
the strain-gradient tensor, which was previously explored in the context of elasticity by Toupin (1962) and
Mindlin (1965). Introduction of strain gradients inevitably implies the existence of a material characteristic
length (Hutchinson, 1997). This in turn implies the presence of a transitional size effect.

A different theory was recently formulated by Gao et al. (1999a,b) and Huang et al. (2000) and named the
mechanism-based strain-gradient (MSG) theory of plasticity. That theory had an exciting novel feature—it
was supported, under certain simplifying assumptions, on the theory of dislocations (Hirth and Lothe, 1982;
Weertman and Weertman, 1964; Cottrell, 1964) and took into account the characteristic spacing of the
geometrically necessary dislocations (as described by Nye (1953)), which gives rise to size effect. However,
subsequent numerical simulations of Huang et al. (2000), as well as simultaneous asymptotic scaling analysis
of Bazant (2000, 2002), showed that some aspects of the MSG theory were questionable. The size of the so-
called ‘meso-scale cell’ providing the linkage between discrete dislocations and a continuum proved in nu-
merical simulations to be indeterminate (Gao and Huang, 2001), while the small-size asymptotic scaling
properties were found to be questionable (Bazant, 2000), impairing the representation of the test data for the
smallest sizes (1 um or less) and making the use of asymptotic matching ineffective.

As a remedy, Bazant (2000, 2002) proposed eliminating the strain-gradient tensor from the differential
equations of equilibrium, and Gao and Huang (2001) reached independently the same conclusion upon
noting from nonlocal finite element simulations that the meso-scale cell size was best considered to be
vanishingly small. Huang et al. (2000) further found an ingenious and numerically friendly representation
of the strain gradient through a nonlocal integral, and Gao and Huang (2001) named the updated theory
the Taylor-based nonlocal theory (TNT), emphasizing that the theory is anchored in G.I. Taylor’s classical
work on dislocations (Hirth and Lothe, 1982).

While the aforementioned theories represent generalization of the deformation theory (total strain
theory) of plasticity, Acharya and Bassani (2000) developed a gradient generalization of the classical in-
cremental theory of plasticity. In that theory, the gradient effect is explained by lattice incompatibility
(Bassani, 2001), which is of course related to the geometrically necessary dislocations.

The purpose of this paper is to extend the previous asymptotic analysis of the MSG theory (Bazant,
2000, 2002) to the updated TNT theory as well as to the, by now classical, theories of Fleck and Hutchinson
(1993, 1997). The small-size asymptotic scaling laws and load—deflection diagrams will be determined for
these theories and applied for developing simple asymptotic matching formulae for the intermediate range
that is of interest for practical applications and is explored in testing. Some special cases of asymptotic
scaling of the MSG theory which were not explored in Bazant (2000, 2002) will be also clarified. Mutual
comparisons of the existing theories, as well as comparisons with the existing test data on the size effect will
be made and documented graphically. The scaling of the plastic hardening modulus in Bassani’s theory will
be also determined, although a full scaling analysis of that theory is beyond the scope of this paper.

2. Scaling of Fleck and Hutchinson’s strain-gradient plasticity
Fleck and Hutchinson (1993) pioneered the development of a phenomenological theory for strain-gradient

plasticity (SGP). They called their first theory the couple stress theory (denoted by CS). Later Fleck and
Hutchinson (1997) improved their theory, calling it the stretch and rotation gradients theory (denoted by SG).

2.1. Fleck and Hutchinson’s formulation

In CS and SG theories, the strain energy density W is assumed to depend on the strain-gradient tensor g
of components 7;; = u;,;; as well as the linearized strain tensor € of components €; = (1/2)(u;; + u;,;)
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(attention is here restricted to small strains). This assumption comes from the classical work of Toupin
(1962) and Mindlin (1965), confined to elastic behavior, and is expressed as
W = Sei€;; + neie + Mgk + QMM + @3N e+ QMM + AN (1)

where A and p are the usual Lamé constants and a, are additional elastic stiffness constants of the material.
Similar to the classical theory, Cauchy stress o;; is defined as 0W /0¢;, and is work-conjugate to ¢;. Fur-
thermore, a higher-order stress tensor t, work-conjugate to the strain-gradient tensor #, is defined as
Ty = OW /On,. If Wis defined by (1), the constitutive relation is of course linear. So (1) is suitable only for
linear isotropic elastic materials. To extend it to general nonlinear elastic materials, a new variable, an
invariant named combined strain quantity, &, is introduced by Fleck and Hutchinson (1997); it is defined as
a function of both the strain tensor and the strain-gradient tensor, while the strain energy density W is
assumed, for general nonlinear elastic material, to be a nonlinear function of &.

To define &, Fleck and Hutchinson (1997) decompose the strain-gradient tensor # into its hydrostatic
part yt and deviatoric part #';

’7;[1( = }1(5""’7/‘1717 +O0uly); M =1— n" 2)

To simplify the problem, only incompressible materials are considered in the modeling of metals, in which
case €, =¢; and nf}k = 0 (which implies deviatoric strain gradient n;; = ;). Furthermore, Fleck and
Hutchinson (1997) introduce the orthogonal decomposition

'1/ _ n/(l) + n/(z) + n/(3) (3)

in which the three tensors are defined in the component form as

1 S S S S
Wi = 15— $Ouly + Oy, + duy,) (4)
2
”;E'k) = é(e[k[’eﬂmn,lpm + ejkpeilmnllpm + 2n;jk - ’7}1(1' - ’7;@') (5)
3) _1/_ o / 27 5 /S 5 /S 5 /S 6
rlijk - 6( eikl’eﬂmnlpm ejkpeilmnlpm + nijk n/kz r’kz/) ( fjnkpp + jknipp + kinjpp) ( )

Here #8 is a fully symmetric tensor defined as
Mo = 300 + Wi + M) (7

Using the foregoing three tensors '), Fleck and Hutchinson (1997) define the combined strain quantity
& as

2 /(3)
& 3611611 + él’/]t]k nl/k + 62’7111» nz/k + 63”1//( nl]k (8)

where ¢; are three length constants which are given different values in the CS and SG theories (which is the
only major difference between these two theories):

/5
For CS: él = 0, 62 = %Ecs, 63 = ﬁgCS (9)
1 5
For SG: El = écs, Ez = Eécg, 63 = ﬁECS (10)

Here /s is called the material characteristic length.

Based on the combined strain quantity & as defined, the strain energy density W can be defined as a
function of & instead of e. Then Cauchy stress tensor ¢ and the higher-order stress tensor t (couple stress
tensor) can be expressed as:
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p W W06 "

e aeik N dé& a€ik
ow  dw a¢é

Y ony 4 (12)
Oy A& Onyye

Using (8) and the condition of incompressibility, one has

ag 26ik

-2 _ 1

Oy 36 (13)

o& 0 a "2 a 1(3) CCor

af’] . (gg (6% /lr:lzl aﬂlmn +£2 ne ar’lmn +€% ne a17lmn _ ~CS ﬂ:g, Munt (14)

ij

where Cjjn 15 a six-dimensional constant dimensionless tensor which could be determined from (4)—(6) and
(14). Obviously, the CS and SG theories will be characterized by different tensors C, although, for each of
them, tensor C is constant, that is, independent of €, # and /cs.

For the sake of simplicity, the following power law is assumed for the strain energy density W (Fleck and
Hutchinson, 1997):

n & (n+1)/
W=——26 15
n+17° 0<€0> (15)

where Xy, & and the strain hardening exponent n are taken to be material constants (and, for hardening
materials, n > 1; typically n ~ 2-5). Thus (11) and (12) yield the constitutive relations

2 I\ o
Oik = 320<50> sUMne, (16
"5
T = 2o ((‘”_o> s Cotmnt iy )

The principle of virtual work yields the following field equations of equilibrium (Fleck and Hutchinson,
1997):

Oiki — Tijky + J&e =0 (18)
2.2. Dimensionless variables

To analyze scaling, conversion to dimensionless variables (labeled by an overbar) is needed. Among
many possible sets of such variables, the following will be convenient:

X'l' = )C,'/l)7 ﬁ,- = Ul'/D, Ezj = 6ij7 ﬁijk = nijkD7 _7‘/( :ka/O-N (19)
Tk = T/ (Zoles),  Gu = ou/Zo, E=6 (20)
ﬁgf() = ng.,i)D where [ =1,2,3 (21)

Here D is the characteristic length of the structure and gy is the nominal strength. Using these dimen-
sionless variables, the constitutive law of the SGP theory can be rewritten as:
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) 1 l/n_
2 (AN e >
ik 3 <é50> & €ik %)
1 1/n / _ _
'Eijk - <(570) %C’ijk/mng)(l " /nrllmn (23)

The field equations of equilibrium transform as
14 ON -
6i6',~k — %aif}jfﬁk + Z%Iﬁ( — 0 (24)

where 0; = 0/0x;, derivatives with respect to the dimensionless coordinates.
After substituting (22) and (23) into (24), we obtain the differential equations of equilibrium in the form:

2 1 v o(1—n)/n= ecs ? 1 v o(1—n)/n—~ ON 7
g G)(T() al(g 6ik> - F g_o aia_/(cijklmrlg '/’[mn) = _Z_Oﬁf (25)

To avoid struggling with the formulation of the boundary conditions, consider first that they are homo-
geneous, i.e., the applied surface tractions and applied couple stresses vanish at all parts of the boundary
where the displacements are not fixed as 0. All the loading characterized by nominal stress oy is applied as
body forces f; whose distributions are assumed to be geometrically similar; oy is considered as the pa-
rameter of these forces, all of which vary proportionally to on. Then the transformed boundary conditions
are also homogeneous. In terms of the dimensionless coordinates, the boundaries of geometrically similar
structures of different sizes are identical.

When the structure is not at maximum load but is hardening, one must decide which are the oy values
that are comparable. What is meaningful is to compare structures of different sizes for the same dimen-
sionless displacement field #;. Thus, the comparable structures will have the same €; and 7.

2.3. Scaling and size effect

The problem of scaling and size effect can now be fully discussed. The limit D/{cs — oo is simple because
the dimensionless third-order stresses 7;; vanish and all the equations reduce to the standard field equations
of equilibrium on the macro-scale. The combined strain quantity & reduces to the classical effective strain,
and (15) becomes the usual strain energy density function.

The opposite asymptotic behavior for D/¢cs — 0 is a little more complex. From (8) we know that when
D/lcs — 0,

_ 2 _
&= \/§ el 6, + Ry (g%rlzjk r’ljk + 62’1111( nljk + 63’1111( r]zjk ) xD : (26)

It is useful to define another dimensionless variable as follows:

\/f ljk ’11//{ + é r’ljk 111//» + 63’711/5 ’111/{) (27)

Obv1ously H is independent of size D, and we have
- !
&~ EH when D/lcs — 0 (28)

After substituting (28) into (25), we obtain the differential equations of equilibrium in the form:

2 ECS (1=n)/n 1 1/n () KCS (14n)/n 1 1/n —(1=n)/n _ _ ON7
§ <3> éao 6,(1—[ eik) — 3 50 a a ( zjklmnH nlmn) - _Z_Of}f (29)
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Now we multiply this equation by (D/(CS)“'“)/ " and take the limit of the left-hand side for D — 0. This
leads to the following asymptotic form of the field equations:

() . _imon (DT

0:0;(Cijkimnl Himn) = Xfxs With =&, 5 (6—) (30)
o \ £cs

Since D is absent from the foregoing field equation (and from the boundary conditions, too, because they

are homogeneous), the dimensionless displacement field as well as the parameter y must be size indepen-

dent. Thus we obtain the following small-size asymptotic scaling law for Fleck and Hutchinson’s theories of

gradient plasticity:

.y ‘€CS (n+1)/n
on = 216, ”(D> (31)

or
on o< DD/ (32)

For hardening materials, we have 1 < (n+1)/n<2.

Since the surface loads may be regarded as the limit case of body forces applied within a very thin surface
layer, the same scaling law must also apply when the load is applied at the boundaries.

Although the result (32) applies only to the special case of strain energy density function (15), the same
analytical technique can be used for general strain energy functions.

Eq. (32) indicates that the asymptotic behavior on the micro-scale depends on the hardening relation on
the macro-scale since the macro-strain-hardening exponent » is involved. Moreover, the asymptotic be-
havior depends only on that exponent. Generally, the present technique can be used for any strain energy
function defined in terms of the strain and strain-gradient tensors, even if no combined strain quantity were
defined.

For example, a similar technique can also be used for the strain energy density function (1) defined for
linear isotropic elastic material for which the combined strain quantity is not used. The constitutive relation
in that case is:

ow
Oik = e = Aby€y + 2uey = (2l15i15km + )véikélm)elm = Diim€im (33)
ik
ow
Tijk = W = 2416410 401 + a2(01n0 kO 1m + 04i0x10mn) + 20300 1Ok + 2040110 juy O + 205010 11Ot | 1
ijk
= C;jklmn”lmﬂ (34)

where the dimension of tensor Dy, 1s that of a stress, and the dimension of tensor Cl’.j,(,mn 1s that of a force.
The dimensionless variables defined in (19) can again be adopted. In terms of the dimensionless variables,

the differential equations of equilibrium are:
1 _ 1 . 1-
Bat(DiklmElm) - Eaiaj(cijklmnnlmn) + Bka'N =0 (35)

For sufficiently large D, the term with 5 will vanish and (35) will become the classical differential equation of
equilibrium. For the opposite case, for which D is sufficiently small, the term with € will vanish, and we get
the following asymptotic behavior:

on o< D72 (36)

Of course, (36) is a special case of (32) because, for a linear material, the strain hardening exponent n = 1.
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2.4. Examples

It is instructive to verify the scaling law in (32) for the basic types of experiments. One important test is
that of micro-torsion. It was initially the size effect in this test (Fleck and Hutchinson, 1997) what motivated
the development of gradient plasticity.

An effective stress measure X may be defined as the work conjugate to &

dw (&)
Z =
dé (37)
A simple power law relationship between 2 and & may be adopted;
> =36 (38)

Compared with (15), one sees that N = 1/n. For the analysis of size effect, the radius of the wire, D, may
be chosen as the characteristic dimension (size). The deformation is characterized by the twist per unit
length, x.

For geometrically similar structures of different sizes, we compare the nominal stresses corresponding to
the same dimensionless twist ¥ = xD. The nominal stress o may be defined as 7/D?, where T is the torque.
If the CS theory is used, one has

(N+3)/2

GN:§:N6—I320T€N %Jr (%)2 - (%)NH (39)
For {cs/D — o0,
1+(€CS>2 <N+3)/2(@CS>N+3%A’+3<D>2<€CS)N+3 (40)
3 D D 2 3lcs D
from which
on oc DN = p-lrth/n (41)

2.5. Small-size asymptotic load—deflection response

For some special cases such as the pure torsion of a long thin wire or the bending of a slender beam, the
displacement distribution can be figured out by the arguments of symmetry and the relative displacement
profile remains constant during the loading process. For such problems, the asymptotic load—deflection
curve for a very small size D can be determined very easily (Bazant, 2000, 2002).

For such loading, all the dimensionless displacements #; at all the points in a structure of a fixed geo-
metry increase in proportion to one parameter, w, such that i, = wi;, where #; is not only independent of
D but also invariable during the proportional loading process. Parameter w may be defined as the dis-
placement norm, w = ||#]|.

From (4)—(8), we know that

& =wé (42)

where & is a function of dimensionless coordinates that does not change during the loading process when
size D is very small. Substituting this into the dimensionless constitutive law (22) and (23), we have

— 1/n 4 = 1/nz
Ojk =W / Oiky  Tijk =W / Tijk (43)
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where 6, and 7, are constant during the loading process if the size D is small enough. Thus the load f; can
now be expressed as a function of w as well as the size D. Since the first two terms on the left-hand side of
(24) are proportional, respectively, to the functions

vvl/nD(n—l)/n7 Wl/nD—(n-H)/n (44)
one reaches the conclusion that
fr o wl/n (45)

For hardening materials, we have 1/n < 1. So the load deflection curve begins with a vertical tangent. We
conclude that the small-size asymptotic load—deflection response is similar to the stress-strain relation for
the macro-scale, except that the initial elastic response gets wiped out when D — 0.

3. Scaling of mechanism-based strain-gradient plasticity

The first theory that was based on the consideration of geometrically necessary dislocations was the
mechanism-based theory of strain-gradient (MSG) plasticity (Gao et al., 1999a,b; Huang et al., 2000),
which is a generalization of the incremental theory of plasticity (Jirdsek and Bazant, 2002). The scaling of
that theory was analyzed in detail in Bazant (2000, 2002). For the sake of comparison, Bazant’s analysis will
now be briefly reviewed.

3.1. Formulation of MSG theory
In the MSG theory, the strain-gradient tensor #,; = u;;;, as well as its work-conjugate couple stress

tensor 1,4, needs again to be introduced. However, 7, is defined in a multiscale framework rather than on
the basis of strain energy density (or the potential energy function). The constitutive relation reads:

20 K o2
Ok = Kéikenn + §€;k’ Tijk = lg (g?]ll;[k + O-(pijk + ?Y qli/") (46)
where
1
D = P (Aijk - Hijk)a Vi = f(e)fl(e)nijk
5 1 (47)
€= §6§j€£/7 n= 7V ik Mije
and
A = 7_12[2’7ijk + Niji + N — %(5%7][)[)/' + 5jk’/’ppi)]7 (48)
Hl'fk = [el'k’/]jmn + 6jknimn - i(é,—ijp + 5j/€€ip)11pmn]6mn/5462 (49)
ngk = %(5”57]][1[7 + 5A/'k17[pp) (50)

Here K, elastic bulk modulus; €, = e — (1/3)dx€qm, deviatoric strains; e; = (1/2)(uix + ux;), strains; e, ,
tensors consisting of components €, 1;4; ngk, volumetric (hydrostatic) part of #5,;. The hardening of the
material is defined as ¢ = ay+/f?(€) + In, where gy, yield stress; g, €, stress and strain intensities; 7, effective
strain gradient proportional to the density of geometrically stored dislocations (i.e., to lattice curvature or

twist); f'(e), classical plastic hardening function, which reflects the effect of statistically stored dislocations
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and is an increasing function of a monotonically decreasing slope, 0 < f”(¢) < co. The material intrinsic
length / is similar to the parameter /cs used in Fleck et al. (1994) and Fleck and Hutchinson (1997) theories,
and it is defined by Gao et al. (1999a) as ! = 302(G/ay)’h, where G = shear modulus; o is an empirical
constant (usually ranging from 0.2 to 0.5); b is the magnitude of Burgers vector of edge or screw dislocation
(e.g., 0.255 nm for copper). Following Bazant (2000, 2002) and similar to Eq. (2.3) of Fleck and Hutchinson
(1997), we can consider a more general hardening relation:

o = av[f’(e) + (i) (51)

with positive exponents p and g (Gao et al.’s theory corresponds to the case p = 1, ¢ = 2); /. is the size of the
so-called “meso-scale cell” (introduced by Gao et al. to set up the higher-order stress tensor 7;; and the
plastic work equality), which is the material length characterizing the transition from standard to gradient
plasticity and is interpreted by Gao et al. (1999a) as the minimum volume on which the macroscopic de-
formation contributions of the geometrically necessary dislocations may be smoothed out by a continuum.
I. is expressed by Gao et al. (1999a) as I, = L, = f(G/oy)b, where L, is the mean spacing between the
statistically stored dislocations at yielding, and /3 is a constant experimental coefficient, suggested by Gao
et al. (1999a) to be between 1 and 10. The differential equations of equilibrium (Gao et al., 1999a,b) are the
same as (18), although the definitions of the stress, couple stress and load are different.

3.2. Dimensionless variables and scaling analysis

We will again use the dimensionless variables (19) and will further introduce
EZE, 17]:7]D, 6-ik :aik/O-Y7 ‘f,-jk:n:,-k/(ayl), 6':O'/O'Y (52)

Since nf.j.k, Ay and I, are defined by Gao et al. (1999a,b) as homogeneous functions of degree 1 of tensors
1% and ¢, the following dimensionless variables (again labeled by an overbar) may be introduced:

M =D, Ay = AyD, Iy = D

(53)

D = DD, Vi = YiuD
The constitutive law may then be rewritten as:

_ K. _ 25, _ Pl K 4 1-

Oix = Eéikenn + 3_€5[k> Tijk = D (a”liﬂ( + 6P + Z L 477 (54)
and the differential equations of equilibrium become

_ Lo ON
0i0i — Bai@ﬂzjk + Efk =0 (55)

Considering, same as before, the loading to consist solely of the body forces f;, we may again restrict
attention to homogeneous boundary conditions. For D/l — oo, which also implies D/I. — oo, all the
equations reduce to the standard formulation of incremental plasticity, with no size effect. The opposite
asymptotic behavior for D/l — 0 is more interesting. From (51) we have ¢ = (ij//D)" /4 when D/l — 0.
After substituting (54) into (55), we obtain the differential equations of equilibrium in the form:

_\ Pl1 2 _\ P1 /
K . _ 2 (I l K _ M\ = D\ ON -
Oi | — Ouem + = | = €l — | =) 00| — o Y Py = YVie| =—— 56
oy K +36<D> u <D> ! 6‘7Ynl'/k+<D> jk+<l’7) " UYfk (56)

There are five terms on the left-hand side of this equation, and for D — 0 they are, in sequence, of the order
of
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O(1), O(D™%), O(D?), O(D*71), O(D*/) (57)

When D — 0, the fourth term will in general be the dominant one and, in consequence, the asymptotic form
of the field equation will be:

. B on /D2

0P ) = i with 1 =22 (7)) (58)
oy /

where A =1[./I, constant. Since D is present neither in the foregoing field equation nor the boundary

conditions (as they are homogeneous), the dimensionless displacement field as well as parameter y; must be

size independent. This leads to the following small-size asymptotic scaling law (obtained by Bazant, 2000,

2002);

- 2 1 el P 1 . —5/2
on = oy A D , and for 5—>§ on x D (59)

where the last expression corresponds to Gao et al.’s theory. As discussed by Bazant (2000, 2002), the
asymptotic size effect given by (59) is curiously strong. It is 5 times stronger than that for similar LEFM
cracks on the macro-scale, which is oy oc D™'/2, and 25 times stronger than the typical Weibull size effect,
which is roughly D!

There exists a special case in which 5,-_,~k =0 for all 7, j, k. This case, which was not analyzed in Bazant
(2000, 2002), occurs for micro-bending of a compressible material. In that case, the fourth term on the left-
hand side of (56) will vanish and so one cannot use (58) any more. Based on (57), the dominant term for
D — 0 will then be the third one. Then the asymptotic form of the field equation will have the form:

2
_ e . _»2ON D
00, = 1ohe with 1, = 6125 (7) (60)

By the same argument as before, parameter y, is size independent. So, the small-size asymptotic scaling
law for this special case is:

K 1\’
oN :gxz)yz(5> or onxD? (61)

Another special case (not considered by Bazant (2000, 2002)) arises for micro-bending of an incom-
pressible material (ng = 0). Since again ®;; = 0 for all ;, j, k, both the fourth term and the third term in (56)
vanish. As seen in (57), the dominant term for D — 0 will now be the fifth. The asymptotic form of the field
equation turns to be:

) ~ - . i D\ rh
aiaj(ﬂfp/qlpijk) = t3fk, With 3 =4 2£ (7> (62)

Here the parameter y; is again size independent, and so the small-size asymptotic scaling law for this special
case is:

2-p/q 1
oN = ay}(3/12 (5) and for N 3 on o< D732 (63)
q

3.3. Small-size asymptotic load—deflection response

As before, consider again the special cases in which the displacement distribution (or relative dis-
placement profile) remains constant during the loading, because of symmetry conditions. This for example
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occurs for torsion and bending. Consider the case of a torsion test of a long circular fiber, in which, by
arguments of symmetry, the tangential displacements must vary linearly along every radius. As stated
before, all the dimensionless displacements #; at all the points in a structure of arbitrary but fixed geometry
increase in proportion to a parameter w such that #, = wiy, where #; is not only independent of D but also
invariable during the proportional loading process.

Since 5 and ®;; are homogeneous functions of degree 1 of both  and €, we may write 77 = wij and
Dy = =wd, ;&> where # and ?, ;« are functions of dimensionless coordinates which do not change during the
loading process at any small enough size D.

First, let us focus on the case that the size D is sufficiently small (compared to the deflection w). Then the
small-size asymptotic forms (59), (61) and (63) still hold and the general case of asymptotic field equation
(59) may be rewritten as

b ) e (64)

0i0; ( /q(puk) :fk’ with ﬁc = Xlﬁw_l_p/qv = =it o (

Oy [

From the field equation, it follows that if the relative displacement distribution (profile) #; is constant

during the loading process, as in pure bending of a slender beam or in torsion of a long cylinder, then the
body force distribution f, at the small-size limit must be constant as well. Using (64), we see that

Jo=hln) whPe - or fi ocw! e (65)

because f,/y, is constant during loading. Therefore, for the MSG theory, the asymptotic load—deflection
diagram is generally of the type:

fiocw? (66)

i.e., the slope is initially zero and then gradually increasing during loading.

However, a special consideration must be given to the case that not only D — 0 but also w — 0, i.e., the
beginning of the load-deflection diagram at D — 0. For this limit case, we must start from the original
dimensionless field equation (56) rather than its asymptotic form. The five terms that are summed on the
left-hand size of (56) are proportional, respectively, to the functions

w, (W/D)P/'i7 w/D?, Wil pple2 yleplappla= o
For the MSG theory (p = 1, ¢ = 2), these functions are
w,  (w/D)2, w/D, w2 D D2 )

and (56) leads to the expression
= G—Nﬁ = ayw + ax(w/D)"* + asw/D* + a;w*> D + asw!'2 D32 (69)
oy

where parameters a;, a,, a3, a4 and as are independent of D and w, and are constant during loading. When
w/D is sufficiently large, the dominant term is a;w*>D~/2, which leads to (66) and the load—deflection curve
in Fig. 1(a). But when w/D is sufficiently small, the dominant term is asw'/2D~/2, and so

fi x w2 for w< D (70)

Hence, the load—deflection curve at D — 0 must begin with a vertical tangent (Fig. 1a and b). The load-
deflection curves for w < D and w > D (Fig. 1a) intersect at point w = wy, which can be solved from
a4w(3)/2D’5/2 = a5w(l]/2D’3/2, that is

wo = (as/as)D or wyxD (71)

Furthermore, in the special case that the fourth term and the third term in (56) vanish, (56) leads to the
expression



5644 Z.P. Bazant, Z. Guo | International Journal of Solids and Structures 39 (2002) 5633-5657

A (a) 7t ® dit ©
/ small D D—0 dw D—0
/ inf d function
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r/ |

Wo w f w w

Fig. 1. Load-deflection curves for the general case of the MSG theory: (a) initial and final curves for very small but finite size D,
(b) asymptotic load—deflection curve for vanishing size D, and (c) asymptotic curve of load—deflection slope versus deflection, begin-
ning with a Dirac delta function spike.

_?ﬂ = ayw + ay(w/D)"* + asw'/*D (72)
Y
Obviously, when w and D are small, the dominant term will in that case be the fifth, regardless the relative
ratio of w/D, and so
feox w2 for all w (73)
Note that the load—deflection curves in (70) and (73) begin with a vertical tangent, i.e., the elastic part of
response is lost in the asymptotic case.

3.4. Examples

An explicit formula in terms of an integral can be easily obtained for the case of a circular fiber of radius
D subjected to torque T; see Eq. (35) in Huang et al. (2000). After transforming that formula to dimen-
sionless coordinates, one has (for p = 1 and ¢ = 2):

o T 2 l{g(pu : )+fff'<6>f’<€>}pdp o
0

€ 12D? 12D%6

where kK = 1 = kD, dimensionless specific angle of twist; x is the actual actual specific angle of twist (ro-
tation angle per unit length of fiber). Taking the limit of oD for D — 0, with oy given by the foregoing
expression, it can be readily checked that the small-size asymptotic form of this formula is

1
ox = oy | 212 L / Pap e D" (75)
18 0 €

This verifies the previous result in (59), as well as (66), with k¥ playing the role of w.
The numerical result of this example can be used to check our asymptotic-matching approximation (109).
Following Huang et al.’s (2000) assumption, the hardening relation used is a simple power law relation:

£le) = (f) (76)

Here FE is Young’s modulus and N is the plastic work-hardening exponent (0 <N < 1). In numerical
computations, N = 0.2. The material length /is 4.896 pum. Another length parameter is /. which depends on
the choice of , G = 2000y, and in view of definition of /. (if § = 1), /. is 51 nm. According to (75), s = 5/2,
and from (109) one gets

oy = k", Dy =78.74" 12" (77)
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Fig. 2. Gao et al.’s (1999a,b) numerical solution of size effect in micro-torsion based on their MSG theory with § = 1 (data points), and
its optimum fit with the proposed asymptotic matching formula (109) based on the presently determined small-size asymptote of that
theory (power law of exponent —5/2).

if f =1 and k = 1. Parameter r is obtained by optimizing the fit of the data; » = 7.1. Fig. 2 shows the
optimum fit that is obtained.

From (77), we know that the parameters D, and o, are not material properties, they depend on the
geometry, deformation, as well as the material constitutive relation.

Another special case for which an explicit formula in terms of an integral can be obtained is the bending
of ultra thin nickel beams, which was tested on nickel; see Eq. (29) in Huang et al. (2000). After trans-
formation to dimensionless coordinates, that formula (for p = 1 and ¢ = 2) reads:

M 2 REI(ES(E)
ON _E_ZJY/O [ﬁap—&—w dp (78)

where D is the beam depth, « is the bending curvature, and ik = ij = kD. Taking lim oxD*? for D — 0, one

finds that the small-size asymptotic form of this formula is

2 1/2
o=ov(#025 [ r@r@an)ep (19)
0

Now we see that this formula is a special case of (63), as well as (73). As pointed out before, (63) applies
only to the cases in which the fourth and third terms on the left-hand side vanish. For micro-bending, this
condition can be verified analytically. From Egs. (24) to (27) in Huang et al. (2000), it is easy to find that

1
D = *(Aijk - Hijk) =0, foranyi,jk (80)
€

This means that the fourth term vanishes. Moreover, since the material is assumed to be incompressible, the
third term vanishes, too.

Using the same material constitutive relation, as well as the same values of / and /., the numerical results
for micro-bending are fit as shown in Fig. 3. According to (79), s = 3/2. The fit is optimum if r is set to be
10.4, and the parameters oy, and D, are

oo = 0.236k°2, Dy = 5.305k Y3 (81)
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Fig. 3. Gao et al.’s (1999a,b) numerical solution of size effect in micro-bending based on their MSG theory with f§ = 1 (data points),
and its optimum fit with the proposed asymptotic matching formula (109) based on the presently determined small-size asymptote of
that theory (power law of exponent —3/2).

3.5. Discussion

In MSG theory, two extra length parameters are introduced—the material length / and the meso-scale
cell size /.. The material length / is said to be a material property, characterized by the empirical constant o.
The presence of / is dictated by dimensional consistency, because of the strain gradient (a similar parameter,
fcs, was also introduced in both Fleck and Hutchinson’s theories).

The second length parameter /. defines the size of the meso-scale cell, which is needed to express the
couple stress tensor 7,3 and the plastic work equality. According to the definition, /. is proportional to the
constant experimental coefficient 5. According to Gao et al. (1999a) and Huang et al.’s (2000) suggestion,
parameter f§ can be between 1 and 10. Then it is interesting to mention that the couple stress 7;; depends on
B (see (46)). Since 1, is independent of /., as well as f8, we know that 7, should be proportional to £>. But,
at the same time, oy is independent of f3, as seen in (46).

So the value of ff needs to be determined by fitting experimental data. However, as Huang et al. (2000)
oberved, “‘the meso-scale cell size /. has little effect on the global physical quantities, although it can affect
the local deformation field”. In the case of micro-torsion, the results for f = 1 and 10 are almost the same
as those for the range of available test data (Fig. 4). This is also true for micro-bending (Fig. 5). So the
question arises: Why the couple stress is needed at all when it is found that the couple stress does not affect
the global physical quantities?

To answer this question, let us look first where the couple stress comes from. In Gao et al.’s multiscale
framework, the stress and strain on the micro-scale (denoted as ¢ and €) obey the Taylor hardening re-
lation:

6 =oy\f2(€) +In (82)

The micro-scale and meso-scale are linked by the plastic work equality:
/ Gi€n dV = (oydey + Tijk611jjk) Veell (83)
Veell

To obtain the constitutive relation, the micro-scale strain in the meso-scale cell is assumed to be linearly
distributed:
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Fig. 4. Size effect plots of the exact solution for micro-torsion based on the Gao et al.’s MSG theory, for different value of parameter f.
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Fig. 5. Size effect plots of the exact solution for micro-bending based on the Gao et al.’s MSG theory, for different value of parameter /.

. 1
d€;; = € + 3 (Onyij + Omy i )xk (84)
Then the stress g can be computed as follows:
1
Oif = —— / 6‘[de (85)
cell J Ve

If the entire system is subdivided into many meso-scale cells to allow numerical integration, we find from
(84) and (85) that

E / i€ dV ~ g Oi€ix Veen (86)
All cells / Veell

All cells
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This formula means that the plastic work can be balanced over the entire system even without being
balanced in every cell. Thus there appears to be no practical advantage in introducing the couple stress 7
because the plastic work balance in the meso-scale cell need not be considered.

In this regard, it should further be noted that when the couple stress 7,; is introduced, it is impossible in
this theory to define a strain energy density function W = W(e,n) such that ¢ = 0 /0e and © = OW /0n
(Gao et al., 1999a). The reason is that the constitutive equations of MSG theory do not satisfy the reci-
procity relation

aGi ij a‘L'kmn

(87)

a’/]kmn 66,- j

This implies that the introduction of 7, is theoretically disadvantageous.

The effect of f5 is quite large. If § = 0, the MSG will change totally. The case f = 0 means that /. = 0, and
according to the constitutive equation (46), 7,4 will be zero. In other words, there will be no couple stress
anymore. Thus the field equation (18) simplifies because the second term on the left-hand side can be
omitted, and turns to be the same as that for classical plasticity.

First let us discuss the effect of this simple function on the asymptotic behavior. From (56), we know the
last three terms on the left-hand side of (56) will vanish (actually, they stem from the vanished term of the
field equation (18)). Thus, for D — 0, the dominant term will be the second one. So the asymptotic form of
the field equation reads:

€. _ rla
o 775 | = afi with g, = Son(D (88)
€ 20y \ [

As before, y, must be size independent. Thus when = 0, the small-size asymptotic scaling law for MSG
theory turns out to be:

/ rla
ON = —0Y)4 (5> (89)

According to Gao et al.’s theory, p/q = 1/2, and so
on o< D712 (90)

We conclude that, upon setting § = 0, the asymptotic scaling becomes more reasonable.

The change in asymptotic scaling will of course affect the approximate asymptotic matching formula.
According to (90), for § = 0, the parameter s should be 1/2. The numerical results for the case of micro-
torsion and micro-bending are now both fit using § = 0. It is interesting that the parameter r, which would
normally be determined by optimum data fitting, is exactly 1 in both examples (the error is within 0.02%,
see Figs. 6 and 7). This result is true for other values of k¥ and other kinds of examples. So the approxi-
mation formula can be written in the following simpler form:

/ D
ON = 0 1+30 (91)

where the parameters gy and D, can also be computed according to (110), with s = 1/2.

When f = 0, the small-size asymptotic load—deflection response will also become simpler. Obviously,
only the first two terms in (67) will appear because the last remaining three terms will vanish. Then, when D
and w are both sufficiently small, the dominant term will be the second one, (w/D)" /1 because p/g< 1.
Hence,

S o whle (92)
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Fig. 6. Gao et al.’s (1999a,b) numerical solution of size effect in micro-torsion based on the special case of MSG theory for f =0
(equivalent to TNT theory), and its optimum fit with the proposed asymptotic matching formula (91) based on the small-size

asymptotic power law of exponent —1/2.
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Fig. 7. Gao et al.’s (1999a,b) numerical solution of size effect in micro-bending based on the special case of MSG theory for f =0
(equivalent to TNT theory), and its optimum fit with the proposed asymptotic matching formula (91) based on the small-size

asymptotic power law of exponent —1/2.

Similar to (70) and (73), the elastic part of response asymptotically disappears.

3.6. Tests of micro-hardness

Gao et al. (1999b) showed that the test results for Rockwell micro-hardness tests of copper can be well

approximated as

A

on = Hy D

(93)

where D, depth of indentation; and A*, A, H,, empirical constants. This formula, however, is purely
empirical. The same data can be also fit very well using another formula, the asymptotic matching
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Fig. 8. Data points measured in micro-indentation test of McElhaney et al. (1998), compared to optimum fit with the proposed
asymptotic matching formula (109) based on the presently determined small-size asymptote of MSG theory, representing a power law
of exponent —5/2.

formula (109) given later, where s is set as 2.5 to fit Gao et al.’s MSG theory (Fig. 8). For s = 1/2, formula
(109) becomes identical to the last equation (which, by coincidence, happens to have the same form as the
formula for the deterministic size effect due to a boundary layer of distributed cracking in flexure of un-
reinforced concrete beams; Bazant and Planas, 1998).

4. Scaling of Taylor-based nonlocal theory of plasticity

Similar to observation in Bazant (2000, 2002) and the present discussion, Gao et al. (1999a) and Huang
et al. (2000) also found that the use of couple stress 7;; offers no advantage and causes an unnecessary
complication in the MSG theory. Realizing this, they soon modified the MSG theory by removing the
couple stress and named the modification as the ““TNT of plasticity”. The strain gradient 7, is in the TNT
theory treated by a nonlocal approximation (Gao and Huang, 2001).

4.1. Formulation of TNT theory
In TNT theory, the strain gradient is introduced as an integral-type nonlocal variable. To this end, Gao
and Huang (2001) expand the strain component ¢; into Taylor series in the neighborhood of point x

ey(xX + &) = €;(x) + €l + O(|E]) (94)

where £ denotes a local coordinate centered at x. Then they multiply this expression with £, over the volume
of a small representative cell V. which contains x and is sufficiently small,

/ E,j(x+§)éde: E,‘j(x) éde‘Feij}m ékéde (95)
Veell

Veell Veell

Therefore, the gradient term ¢;;; can be approximated by an integral of strain e

Cijk = /
Ve

cell

ei(x + &) — Gz/(x)]CdeV</Vce” fkfde>l (96)
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If V. is a cube centered at x,

1

1 .
eij,k = — / Eijik dV Wlth [( = / é%dV = — lf (97)
1 Veell Veell 12

Thus the strain gradient 7,;, defined as w ;, can be treated as a nonlocal variable:

Nije = Il / [eal; + enli — €&V (98)
€ J Veell
Using this formula, one can easily define 5", ' and the effective strain gradient n = (1/ 2)(17;/,(172/,()1/ ?, which
is the same as that defined in the MSG theory. For cells of other shapes and for points near the boundary,
the general form (96), rather than (97), should of course be used to define the nonlocal variable 7.
The constitutive relation of TNT theory can be written as:

2
Ok = Kéikerm + _O- ei‘k (99)
3¢
where
0 = 0w/ f2(€) + In (100)

Although this expression for stress intensity o is similar to that used in the MSG theory (Eq. (51) for p =1,
q = 2), oy is replaced by o, representing any reference stress in uniaxial tension. The choice of g, will
affect the value of the corresponding material length / (Gao and Huang, 2001, however, show the con-
stitutive equation of the TNT theory to be independent of the choice of g..r). Similarly to the MSG theory,
we can also consider a more general relation here: o = o [f4(€) + (In)’]'* with arbitrary positive expo-
nents p and ¢ (Gao et al.’s TNT theory corresponds to the case p =1, g = 2).

Obviously the constitutive equation is similar to that of the MSG theory, although the effective strain
gradient is now defined as a nonlocal variable, and the couple stress has disappeared. If we set f = 0, we can
find that the TNT theory is almost the same, except that, in the TNT theory, the strain gradient is defined as
a nonlocal variable. So the size effect analysis of the TNT theory will be similar to that in Section 3.5.

The only major difference between the TNT theory and the classical plasticity theory is that the con-
stitutive equation of the TNT theory is nonlocal and size-dependent (because an intrinsic material length /is
involved). The differential equation of equilibrium of the TNT theory is the same as the classical one, i.e.
O + fr = 0.

4.2. Size effect analysis

It can be shown that the integral in (97) is in fact equivalent to a finite difference representation of a
derivative of ¢; (Gao and Huang, 2001). So we define dimensionless variables similar to (19) and (20):

X =x;/D, w=u/D, € =¢; Mu=n;D, €E=¢ (101)

n= 7’D7 O = Gik/arcﬁ g = G/Grcﬁ ]k :ka/GN (102)
The derivatives with respect to dimensionless coordinates x; are again denoted as O; = 0/0x;. The constit-
utive law of the TNT theory may now be rewritten as:
K 26
51’ 7nn A= # 103
Oref ke + 3e ik ( )
and the differential equations of equilibrium transform as

O =

ON

06 +—fi =0 (104)

Oref
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Restricting attention, as before, to the loading in the form of body forces, we may again avoid the
formulation of boundary conditions, considering them as homogeneous.

For //D — 0, the constitutive equation (99) of the TNT theory turns out to be the same as in the classical
plasticity theory, in which there is no size effect.

The opposite asymptotic behavior for D/l — 0 is a little more complex. From (51) we have ¢ = (j//D)" /4
when D/I — 0. After substituting (103) into (55), we obtain the differential equations of equilibrium in the
form

rlq
K _ 2 lﬁ - - ON -.
6,» Eé,’kﬁnn +§<_> €ir —_—fk (105)

When D — 0, the second term on the left hand side will dominate, and so the asymptotic form of the field
equation is:

é. B D rlq
€ 20y \ [

where y is a size independent constant. Thus the small-size asymptotic scaling law for the TNT theory turns
to be, in general, on = —ayx(Z/D)p/", and according to Gao et al.’s theory (p/q = 1/2):

on o< D712 (107)

4.3. Small-size asymptotic load—deflection response

The small-size asymptotic load—deflection response of the TNT theory is also the same as the case of f =
0 in MSG theory. When D and w are both sufficiently small, the dominant term on the left-hand side of
(105) will be the second one; hence, in general, f; o« w”/? and, for Gao et al.’s theory:

fi ocw!/? (108)

Again, the elastic response is missing in the asymptotic case.

5. Asymptotic-matching approximation

The small-size asymptotic scaling law established in Bazant (2000, 2002) for the MSG theory, and here
for the MSG and Fleck and Hutchinson’s theories, can be closely approached when the cross-section size of
a metallic specimen is reduced to about 10 nm. This size is of course too small for these theories to be valid.
A realistic theory for such a small size would have to take into account the surface energy and surface
tension effects, and it would have to be based on an interatomic potential. Does it mean that the asymptotic
scaling laws that have been established are only of academic interest? Certainly not, for three reasons.

One reason simply is that a theory that implies an unreasonable asymptotic size effect should better be
avoided. For the scaling of nominal stress, power laws with exponents —5/2 or —2 would in principle be
impossibly strong, far stronger than any known size effects in solid mechanics. Even a power law with the
exponent —(n + 1)/n, which could typically be about —1.3, seems to be somewhat too strong.

The second reason is that knowledge of two opposite asymptotic behaviors, normally those for the large
and small scales, makes it possible to benefit from asymptotic matching. Asymptotic matching is a broad
term for mathematical techniques that yield approximate solutions for the practical length or size range of
interest in which the solution is much harder than it is the adjacent asymptotic ranges. The earliest example
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of asymptotic matching is the boundary layer theory in fluid mechanics, conceived by Prandtl (1904). Ever
since, the asymptotic matching has been pursued systematically in fluid mechanics (Bender and Orszag,
1978; Barenblatt, 1979; Hinch, 1991), but in the solid mechanics community this technique has not been
exploited until the recent researches of size effect (Bazant, 1997, 1999).

The third reason is the gradual transition of response to the asymptotic one. For example, we found the
small-size asymptotic load—deflection diagram for the MSG theory to have a positive curvature, which is
unreasonable. Therefore, as the size is reduced from, say, D = 100-0.1 pm, one must expect the curvature of
this diagram to change gradually from a large negative value to a small negative value, and then to a small
positive value. The comparisons of the MSG theory with experiments, exhibited in Gao et al. (1999a,b),
demonstrate this kind of transition and one may note that, for the smallest sizes tested (about 1 pum), the
theory predictions for micro-bending are too soft at small stress and too stiff at large stress, compared to
test data.

In the special case of scaling laws for geometrically similar bodies, the asymptotic matching is much
simpler than it is in fluid mechanics. It does not necessitate any solution of differential equations, in contrast
to the boundary layer theory. Rather, it suffices to find a simple and smooth formula that has the required
small-size and large-size asymptotic properties. This simple kind of asymptotic matching has been sys-
tematically pursued with success during the last two decades for the purpose of establishing size effect laws
for various types of failure of quasibrittle materials—first for concrete, and rocks, and more recently for sea
ice and fiber composites (Bazant and Planas, 1998; Bazant and Chen, 1997; Bazant and Novak, 2000;
Bazant, 1984, 1997, 1999). A similar approach was suggested in Bazant (2000, 2002) to be taken for the
gradient plasticity of metals on the micrometer scale. Solving this problem for the practical range of interest
(0.1-100 pm) would be hard but the asymptotic cases are easy to determine for all the available theories, as
shown in Bazant (2000, 2002) and in this paper.

In the present case, the asymptotic matching approach calls for a formula that yields a smooth transition
between the case of no size effect for D — oo and the case of power law oy x D™ for D — 0 (s > 0).
Perhaps the simplest formula with these properties is

72
D() 2s/r
1+ (3) 1 (109)

where r is a constant, which determines how slow the transition is. The larger is r, the slower is the
transition. For the case of the MSG theory, s = 5/2 (Bazant, 2002) or 2, or 3/2; for Fleck et al.’s theories,
s = (n+1)/n; and for the TNT theory, s = 1/2. The parameters ¢, and D, can be determined as follows

D 1/s
oo = lim on, Dp= [ lim <"N ﬂ (110)

D/l—o0 D/1—0 ()

oN = Oy

Parameter r, which controls the slowness of the transition, and it must be calibrated by experiments or
numerical simulations.

6. Comparison of asymptotic scaling laws

6.1. Asymptotic behavior

For Fleck and Hutchinson’s CS and SG theories, we have

n+1
]/’:
n

-
on x D™,

(1<r<2) (111)
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For the MSG theory, we have
ox x D™ s =3in general, s =2 or 3 in special cases (112)

and if, as suggested in Bazant (2000, 2002) and again here, f = 0, then s = 1/2.
For the TNT theory, we have (with p/q = 1/2):

on o< D712 (113)

6.2. Small-size asymptotic load—-deflection response

For Fleck and Hutchinson’s CS and SG theories, we have
foocw  1/n<1 (114)

where 7 is the strain hardening exponent.
For the MSG theory, in general, we have

fiocw? and  f cw!'?, forw< D (115)

In some special cases, though, the scaling can be fi o< w!/? regardless of the value of w/D.
For the TNT theory, we have f; o« w”/9, and for Gao et al.’s formulation (p/q = 1/2):

S ocw!/? (116)
Note again that the elastic part of response asymptotically vanishes for (115) and (116).

6.3. Linkage between the small-size asymptotic behavior and the constitutive relation for the macro-scale

In the MSG and TNT theories, the small size asymptotic behaviors are determined by micro-scale
material parameters which are independent of the macro-scale material parameters. However, in Fleck and
Hutchinson’s theories, the small-size asymptotic behavior is determined solely by macro-scale material
parameters, which might be a somewhat questionable aspect of these theories.

6.4. Existence of strain energy density function

An advantage of Fleck and Hutchinson’s CS and SG theories is that the strain energy density function
exists. It is defined as a function of the so-called “combined strain quantity”’ &, which in turn is a variable
depending on € and 7.

For the MSG theory, the strain energy density function does not exist because the reciprocity relation is
not met; see (87).

For the TNT theory, the strain energy density function can be defined according to its constitutive
equation (99) in a way similar to the classical theory of plasticity. The difference is that the hardening is
defined as a function of the nonlocal strain.

7. Scaling of plastic hardening modulus in Acharya and Bassani’s gradient theory

Finally, a brief look at the theory of Acharya and Bassani (2000) and Bassani (2001) is appropriate.
These authors developed a simple gradient theory which differs significantly from the previous four the-
ories. It is a generalization of the classical incremental theory of macro-scale plasticity, rather than the
deformation (total strain) theory. In contrast to the previous four theories, in which the strain-gradient
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tensor 5 is defined as a third-order tensor representing the gradient of total strain, the lattice incompatibility

is measured by a second-order tensor defined by the following contraction of the gradient of plastic strain

pP.
Gij‘

aij = ejklef,"k (117)
where ey, is the alternating symbol. The plastic hardening is assumed to be governed by the invariant:

o = 4/ 20{,"/'0(‘]'1' (1 18)
Then the basic equations of the classical J, flow theory are modified as follows:
fjo'f'j

2

[

=Tq, T=1Tg= h(,yp7a),)')p (119)

. PP ) ) . 2
é& = (%)G;j’ 6 = Ci(én — €), 7 = gef}eﬁ} (120)

The variables used in the above are almost the same as in the classical J, flow theory except that the in-
stantaneous hardening-rate function 4 depends not only on plastic strain invariant y” but also on o. The
following hardening function A(y?,«) is used by Bassani (2001) for numerical simulation of the micro-
torsion test:

N-1 2 W2
P Pl
h(y’, ) ho(y0+1> ll +1+C(VP/“/0)2] (121)

where / is a material length introduced for dimensionality reasons, and 4y, y,, ¢ and N are further material
constants (all positive).

Although a full analysis of scaling of this theory is beyond the scope of this paper, some simple ob-
servations can be made. From the scale transformations #; = u;/D, € = €D, it follows that a;; = @;;/D,
where the overbars again denote the dimensionless variables. Since 7 = y?, the plastic hardening modulus
defined by (121) scales for D — 0 as

N-1 _
) =i T4 1) et T E S (122)
Yo Yo D
This means that, at the same strain level, the slope of the plastic hardening curve increases as D~' when
D — 0. When the plastic strain becomes much larger than the elastic strain, and when the strain distri-
butions and history are similar, then of course the nominal stress oy must also scale asymptotically as D!,
This is again a curiously strong asymptotic size effect, not much less strong than that found for the MSG
and CS theories. Even though this excessive size effect is approached only outside the range of applicability
of the theory, one must expect that it would impair the representation of test data in the middle range of
practical interest.
The excessive asymptotic size effect could be avoided by redefining the plastic hardening modulus in
(121) as follows:

h(y,0) = h (KH)NI [1 +%}1/2 (123)
7 ’ Yo L+ c(y?/70)

With this revision, which should be checked against test data, the asymptotic scaling would become

h(y", ) < D™'*  when D — 0 (124)
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which seems more reasonable and similar to Bazant’s (2000) proposal for revision of MSG theory, as well as
to the TNT theory.

8. Summary and conclusions

(1) The approach introduced by Bazant (2000, 2002) for determining the asymptotic properties of Gao
et al.’s (1999a,b) MSG theory of metal plasticity is now applied to Gao and Huang’s (2001) newer theory,
the TNT, and to Fleck and Hutchinson’s (1993, 1997) theories, the original gradient theories of metal
plasticity on the micrometer scale. The small-size asymptotic scaling laws and load—deflection diagrams of
these two theories are determined. Furthermore, Bazant’s (2000, 2002) asymptotic analysis of the MSG
theory is extended to two special cases with atypical asymptotic scaling.

(2) The small-size asymptotic scaling laws for the nominal stress oy in all the existing theories are power
laws, but there are wide disparities among them. For the MSG theory, Bazant (2000, 2002) showed that, in
general, o oc D~%/2, which is an unreasonably strong size effect. For two special cases of the MSG theory it
is shown here that o oc D2 and D~3/?, which is also very strong. For the classical Fleck and Hutchinson
CS and SG theories, it is found that oy oc D~"*1/" (where n is the exponent of the strain hardening law on
the macro-scale); typically, on oc D3, which is also quite strong. For the TNT theory (as well as for the
modification of the MSG theory proposed in Bazant, 2000, 2002), ox o< D~'/2, which seems reasonable.

(3) The small size asymptotic load—deflection diagram of the MSG theory was shown in Bazant (2000,
2002) to be a power law of the type on o< w*/? (w is the deflection). The fact that the slope of this diagram is
initially horizontal and then increases, rather then decreases, is unrealistic. For the Fleck and Hutchinson
theories, it is shown here that oy o< w!'/”, which is typically about w'/> and is reasonable overall, except that
the initial slope is vertical (i.e., the initial stiffness is infinite, elasticity vanishes). The same result, ox o< w'/2,
is obtained here for the TNT theory.

(4) Although the small-size asymptotic behavior is closely approached only at sizes much smaller than
the range of applicability of the strain-gradient theories of plasticity (which is about 0.1-100 um), the
knowledge of this behavior is useful for developing asymptotic matching approximations for the realistic
middle range.

(5) A simple asymptotic formula for the asymptotic matching of the small-size and large-size behaviors,
proposed in Bazant (2000, 2002) for the MSG theory, is here extended to the other theories and is shown to
provide good approximations of the experimental as well numerical results for the middle range. The
availability of such formulae means that the stress analysis for the middle range, which is much more
difficult than the asymptotic analysis, can be avoided. Such an approach, however, is possible only if the
small-size asymptotic behavior is realistic. This is for example documented by the fact that, for the MSG
theory, the response for sizes under 1 um is somewhat too soft at small deflections and too stiff at large
deflections, and that the size effect at the lower limit of the range of experiments is excessive. The detri-
mental consequence of unrealistic small-size asymptotic properties is that the possibility of asymptotic
matching approximations is lost.

(6) The plastic hardening modulus in the theory of Bassani and Acharya scales asymptotically as D™,
which also seems excessive. However, a simple modification can achieve the scaling to be D~'/2.
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