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Abstract

To explain the size effect found in the testing of plastic behavior of metals on the micrometer scale, four theories of

strain-gradient plasticity, representing generalizations of the deformation theory of plasticity, have been developed

since 1993––the pioneering original theory of Fleck and Hutchinson in two subsequent versions, the mechanism-based

strain-gradient (MSG) plasticity of Gao and co-workers (the first theory anchored in the concept of geometrically

necessary dislocations), and Gao and Huang�s recent update of this theory under the name Taylor-based nonlocal

theory. Extending a recent study of Ba�zzant in 2000 focused solely on the MSG theory, the present paper establishes the

small-size asymptotic scaling laws and load–deflection diagrams of all the four theories. The scaling of the plastic

hardening modulus for the theory of Acharya and Bassani, based on the incremental theory of plasticity, is also de-

termined. Certain problematic asymptotic features of the existing theories are pointed out and some remedies proposed.

The advantages of asymptotic matching approximations are emphasized and an approximate formula of the asymptotic

matching type is proposed. The formula is shown to provide a good description of the experimental and numerical

results for the size range of the existing experiments (0.5–100 lm).
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Testing of micro-indentation, micro-torsion and micro-bending of copper and other metals on the mi-
crometer scale (see, e.g., in Fleck et al., 1994; Gao et al., 1999a,b), conducted in the early 1990s, revealed a

size effect and a significantly stiffer response than predicted by the classical theory of plasticity calibrated on

the macro-scale. A similar stiffening was suggested by experiments demonstrating a great increase of yield

strength and plastic hardening in nanocomposites (Lloyd, 1994; Kiser et al., 1996). It became clear that the

differences, attributed to the effect of geometrically necessary dislocations (Gao et al., 1999a,b), called for a
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new theory. Development of such a theory was pioneered by Fleck and Hutchinson (1993, 1997). They

generalized the deformation theory of plasticity by incorporating into it, in a properly invariant manner,

the strain-gradient tensor, which was previously explored in the context of elasticity by Toupin (1962) and

Mindlin (1965). Introduction of strain gradients inevitably implies the existence of a material characteristic
length (Hutchinson, 1997). This in turn implies the presence of a transitional size effect.

A different theory was recently formulated by Gao et al. (1999a,b) and Huang et al. (2000) and named the

mechanism-based strain-gradient (MSG) theory of plasticity. That theory had an exciting novel feature––it

was supported, under certain simplifying assumptions, on the theory of dislocations (Hirth and Lothe, 1982;

Weertman and Weertman, 1964; Cottrell, 1964) and took into account the characteristic spacing of the

geometrically necessary dislocations (as described by Nye (1953)), which gives rise to size effect. However,

subsequent numerical simulations of Huang et al. (2000), as well as simultaneous asymptotic scaling analysis

of Ba�zzant (2000, 2002), showed that some aspects of the MSG theory were questionable. The size of the so-
called �meso-scale cell� providing the linkage between discrete dislocations and a continuum proved in nu-

merical simulations to be indeterminate (Gao and Huang, 2001), while the small-size asymptotic scaling

properties were found to be questionable (Ba�zzant, 2000), impairing the representation of the test data for the
smallest sizes (1 lm or less) and making the use of asymptotic matching ineffective.

As a remedy, Ba�zzant (2000, 2002) proposed eliminating the strain-gradient tensor from the differential

equations of equilibrium, and Gao and Huang (2001) reached independently the same conclusion upon

noting from nonlocal finite element simulations that the meso-scale cell size was best considered to be

vanishingly small. Huang et al. (2000) further found an ingenious and numerically friendly representation
of the strain gradient through a nonlocal integral, and Gao and Huang (2001) named the updated theory

the Taylor-based nonlocal theory (TNT), emphasizing that the theory is anchored in G.I. Taylor�s classical
work on dislocations (Hirth and Lothe, 1982).

While the aforementioned theories represent generalization of the deformation theory (total strain

theory) of plasticity, Acharya and Bassani (2000) developed a gradient generalization of the classical in-

cremental theory of plasticity. In that theory, the gradient effect is explained by lattice incompatibility

(Bassani, 2001), which is of course related to the geometrically necessary dislocations.

The purpose of this paper is to extend the previous asymptotic analysis of the MSG theory (Ba�zzant,
2000, 2002) to the updated TNT theory as well as to the, by now classical, theories of Fleck and Hutchinson

(1993, 1997). The small-size asymptotic scaling laws and load–deflection diagrams will be determined for

these theories and applied for developing simple asymptotic matching formulae for the intermediate range

that is of interest for practical applications and is explored in testing. Some special cases of asymptotic

scaling of the MSG theory which were not explored in Ba�zzant (2000, 2002) will be also clarified. Mutual

comparisons of the existing theories, as well as comparisons with the existing test data on the size effect will

be made and documented graphically. The scaling of the plastic hardening modulus in Bassani�s theory will
be also determined, although a full scaling analysis of that theory is beyond the scope of this paper.

2. Scaling of Fleck and Hutchinson’s strain-gradient plasticity

Fleck andHutchinson (1993) pioneered the development of a phenomenological theory for strain-gradient

plasticity (SGP). They called their first theory the couple stress theory (denoted by CS). Later Fleck and
Hutchinson (1997) improved their theory, calling it the stretch and rotation gradients theory (denoted by SG).

2.1. Fleck and Hutchinson’s formulation

In CS and SG theories, the strain energy density W is assumed to depend on the strain-gradient tensor g

of components gijk � uk;ij as well as the linearized strain tensor � of components �ij � ð1=2Þðui;j þ uj;iÞ
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(attention is here restricted to small strains). This assumption comes from the classical work of Toupin

(1962) and Mindlin (1965), confined to elastic behavior, and is expressed as

W ¼ 1
2
k�ii�jj þ l�ij�ij þ a1gijjgikk þ a2giikgkjj þ a3giikgjjk þ a4gijkgijk þ a5gijkgkji ð1Þ

where k and l are the usual Lam�ee constants and an are additional elastic stiffness constants of the material.
Similar to the classical theory, Cauchy stress rij is defined as oW =o�ij, and is work-conjugate to �ij. Fur-
thermore, a higher-order stress tensor s, work-conjugate to the strain-gradient tensor g, is defined as

sijk ¼ oW =ogijk. If W is defined by (1), the constitutive relation is of course linear. So (1) is suitable only for

linear isotropic elastic materials. To extend it to general nonlinear elastic materials, a new variable, an

invariant named combined strain quantity, E, is introduced by Fleck and Hutchinson (1997); it is defined as
a function of both the strain tensor and the strain-gradient tensor, while the strain energy density W is

assumed, for general nonlinear elastic material, to be a nonlinear function of E.
To define E, Fleck and Hutchinson (1997) decompose the strain-gradient tensor g into its hydrostatic

part gH and deviatoric part g0;

gHijk � 1
4
ðdikgjpp þ djkgippÞ; g0 ¼ g � gH ð2Þ

To simplify the problem, only incompressible materials are considered in the modeling of metals, in which

case �0ij ¼ �ij and gHijk ¼ 0 (which implies deviatoric strain gradient g0
ijk ¼ gijk). Furthermore, Fleck and

Hutchinson (1997) introduce the orthogonal decomposition

g0 ¼ g0ð1Þ þ g0ð2Þ þ g0ð3Þ ð3Þ
in which the three tensors are defined in the component form as

g0ð1Þ
ijk ¼ g0S

ijk � 1
5
ðdijg

0S
kpp þ djkg

0S
ipp þ dkig

0S
jppÞ ð4Þ

g0ð2Þ
ijk ¼ 1

6
ðeikpejlmg0

lpm þ ejkpeilmg0
lpm þ 2g0

ijk � g0
jki � g0

kijÞ ð5Þ

g0ð3Þ
ijk ¼ 1

6
ð�eikpejlmg0

lpm � ejkpeilmg0
lpm þ 2g0

ijk � g0
jki � g0

kijÞ þ 1
5
ðdijg

0S
kpp þ djkg

0S
ipp þ dkig

0S
jppÞ ð6Þ

Here g0S is a fully symmetric tensor defined as

g0S
ijk ¼ 1

3
ðg0

ijk þ g0
jki þ g0

kijÞ ð7Þ

Using the foregoing three tensors g0ðiÞ, Fleck and Hutchinson (1997) define the combined strain quantity

E as

E2 ¼ 2
3
�0ij�

0
ij þ ‘21g

0ð1Þ
ijk g0ð1Þ

ijk þ ‘22g
0ð2Þ
ijk g0ð2Þ

ijk þ ‘23g
0ð3Þ
ijk g0ð3Þ

ijk ð8Þ

where ‘i are three length constants which are given different values in the CS and SG theories (which is the

only major difference between these two theories):

For CS: ‘1 ¼ 0; ‘2 ¼ 1
2
‘CS; ‘3 ¼

ffiffiffiffiffi
5

24

r
‘CS ð9Þ

For SG: ‘1 ¼ ‘CS; ‘2 ¼ 1
2
‘CS; ‘3 ¼

ffiffiffiffiffi
5

24

r
‘CS ð10Þ

Here ‘CS is called the material characteristic length.

Based on the combined strain quantity E as defined, the strain energy density W can be defined as a
function of E instead of �. Then Cauchy stress tensor r and the higher-order stress tensor s (couple stress

tensor) can be expressed as:
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rik ¼
oW
o�ik

¼ dW
dE

oE

o�ik
ð11Þ

sijk ¼
oW
ogijk

¼ dW
dE

oE

ogijk
ð12Þ

Using (8) and the condition of incompressibility, one has

oE

o�ik
¼ 2�ik

3E
ð13Þ

oE

ogijk
¼ 1

E
‘21g

0ð1Þ
lmn

og0ð1Þ
lmn

ogijk

 
þ ‘22g

0ð2Þ
lmn

og0ð2Þ
lmn

ogijk
þ ‘23g

0ð3Þ
lmn

og0ð3Þ
lmn

ogijk

!
¼ ‘2CSCijkmnlgmnl

E
ð14Þ

where Cijkmnl is a six-dimensional constant dimensionless tensor which could be determined from (4)–(6) and
(14). Obviously, the CS and SG theories will be characterized by different tensors C, although, for each of

them, tensor C is constant, that is, independent of �, g and ‘CS.
For the sake of simplicity, the following power law is assumed for the strain energy densityW (Fleck and

Hutchinson, 1997):

W ¼ n
nþ 1

R0E0

E

E0

� �ðnþ1Þ=n

ð15Þ

where R0, E0 and the strain hardening exponent n are taken to be material constants (and, for hardening

materials, nP 1; typically n � 2–5). Thus (11) and (12) yield the constitutive relations

rik ¼
2

3
R0

1

E0

� �1=n

Eð1�nÞ=n�ik ð16Þ

sijk ¼ R0

1

E0

� �1=n

‘2CSE
ð1�nÞ=nCijklmnglmn ð17Þ

The principle of virtual work yields the following field equations of equilibrium (Fleck and Hutchinson,

1997):

rik;i � sijk;ij þ fk ¼ 0 ð18Þ

2.2. Dimensionless variables

To analyze scaling, conversion to dimensionless variables (labeled by an overbar) is needed. Among
many possible sets of such variables, the following will be convenient:

�xxi ¼ xi=D; �uui ¼ ui=D; ���ij ¼ �ij; �ggijk ¼ gijkD; �ffk ¼ fkD=rN ð19Þ

�ssijk ¼ sijk=ðR0‘CSÞ; �rrik ¼ rik=R0; �EE ¼ E ð20Þ

�gg0ðlÞ
ijk ¼ g0ðlÞ

ijk D where l ¼ 1; 2; 3 ð21Þ

Here D is the characteristic length of the structure and rN is the nominal strength. Using these dimen-
sionless variables, the constitutive law of the SGP theory can be rewritten as:
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�rrik ¼
2

3

1

E0

� �1=n

�EEð1�nÞ=n���ik ð22Þ

�ssijk ¼
1

E0

� �1=n
‘CS
D

Cijklmn
�EEð1�nÞ=n�gglmn ð23Þ

The field equations of equilibrium transform as

oi�rrik �
‘CS
D

oioj�ssijk þ
rN

R0

�ffk ¼ 0 ð24Þ

where oi ¼ o=o�xxi, derivatives with respect to the dimensionless coordinates.
After substituting (22) and (23) into (24), we obtain the differential equations of equilibrium in the form:

2

3

1

E0

� �1=n

oið�EEð1�nÞ=n���ikÞ �
‘CS
D

� �2
1

E0

� �1=n

oiojðCijklmn
�EEð1�nÞ=n�gglmnÞ ¼ � rN

R0

�ffk ð25Þ

To avoid struggling with the formulation of the boundary conditions, consider first that they are homo-

geneous, i.e., the applied surface tractions and applied couple stresses vanish at all parts of the boundary

where the displacements are not fixed as 0. All the loading characterized by nominal stress rN is applied as
body forces fk whose distributions are assumed to be geometrically similar; rN is considered as the pa-

rameter of these forces, all of which vary proportionally to rN. Then the transformed boundary conditions

are also homogeneous. In terms of the dimensionless coordinates, the boundaries of geometrically similar

structures of different sizes are identical.

When the structure is not at maximum load but is hardening, one must decide which are the rN values

that are comparable. What is meaningful is to compare structures of different sizes for the same dimen-

sionless displacement field �uuk. Thus, the comparable structures will have the same ���ik and �ggijk.

2.3. Scaling and size effect

The problem of scaling and size effect can now be fully discussed. The limit D=‘CS ! 1 is simple because

the dimensionless third-order stresses �ssijk vanish and all the equations reduce to the standard field equations
of equilibrium on the macro-scale. The combined strain quantity E reduces to the classical effective strain,

and (15) becomes the usual strain energy density function.

The opposite asymptotic behavior for D=‘CS ! 0 is a little more complex. From (8) we know that when

D=‘CS ! 0,

�EE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�0ij�

0
ij þ

1

D2
ð‘21�gg

0ð1Þ
ijk �gg

0ð1Þ
ijk þ ‘22�gg

0ð2Þ
ijk �gg

0ð2Þ
ijk þ ‘23�gg

0ð3Þ
ijk �gg

0ð3Þ
ijk Þ

r
/ D�1 ð26Þ

It is useful to define another dimensionless variable as follows:

H ¼ 1

‘CS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘21�gg

0ð1Þ
ijk �gg

0ð1Þ
ijk þ ‘22�gg

0ð2Þ
ijk �gg

0ð2Þ
ijk þ ‘23�gg

0ð3Þ
ijk �gg

0ð3Þ
ijk

q
ð27Þ

Obviously H is independent of size D, and we have

�EE � ‘CS
D

H when D=‘CS ! 0 ð28Þ

After substituting (28) into (25), we obtain the differential equations of equilibrium in the form:

2

3

‘CS
D

� �ð1�nÞ=n
1

E0

� �1=n

oiðH
ð1�nÞ=n

���ikÞ �
‘CS
D

� �ð1þnÞ=n
1

E0

� �1=n

oiojðCijklmnH
ð1�nÞ=n

�gglmnÞ ¼ � rN

R0

�ffk ð29Þ
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Now we multiply this equation by ðD=‘CSÞðnþ1Þ=n and take the limit of the left-hand side for D ! 0. This

leads to the following asymptotic form of the field equations:

oiojðCijklmnH
ð1�nÞ=n

�gglmnÞ ¼ v�ffk; with v ¼ �EE
1=n
0

rN

R0

D
‘CS

� �ðnþ1Þ=n

ð30Þ

Since D is absent from the foregoing field equation (and from the boundary conditions, too, because they

are homogeneous), the dimensionless displacement field as well as the parameter v must be size indepen-

dent. Thus we obtain the following small-size asymptotic scaling law for Fleck and Hutchinson�s theories of
gradient plasticity:

rN ¼ R0v�EE
�1=n
0

‘CS
D

� �ðnþ1Þ=n

ð31Þ

or

rN / D�ðnþ1Þ=n ð32Þ

For hardening materials, we have 1 < ðnþ 1Þ=n6 2.
Since the surface loads may be regarded as the limit case of body forces applied within a very thin surface

layer, the same scaling law must also apply when the load is applied at the boundaries.

Although the result (32) applies only to the special case of strain energy density function (15), the same

analytical technique can be used for general strain energy functions.

Eq. (32) indicates that the asymptotic behavior on the micro-scale depends on the hardening relation on

the macro-scale since the macro-strain-hardening exponent n is involved. Moreover, the asymptotic be-

havior depends only on that exponent. Generally, the present technique can be used for any strain energy

function defined in terms of the strain and strain-gradient tensors, even if no combined strain quantity were
defined.

For example, a similar technique can also be used for the strain energy density function (1) defined for

linear isotropic elastic material for which the combined strain quantity is not used. The constitutive relation

in that case is:

rik ¼
oW
o�ik

¼ kdik�ll þ 2l�ik ¼ ð2ldildkm þ kdikdlmÞ�lm ¼ Diklm�lm ð33Þ

sijk ¼
oW
ogijk

¼ ½2a1dildjkdlm þ a2ðdindjkdlm þ dijdkldmnÞ þ 2a3dijdlmdkn þ 2a4dildjmdkn þ 2a5dindjmdkl
glmn

¼ C0
ijklmnglmn ð34Þ

where the dimension of tensor Diklm is that of a stress, and the dimension of tensor C0
ijklmn is that of a force.

The dimensionless variables defined in (19) can again be adopted. In terms of the dimensionless variables,

the differential equations of equilibrium are:

1

D
oiðDiklm���lmÞ �

1

D3
oiojðC0

ijklmn�gglmnÞ þ
1

D
�ffkrN ¼ 0 ð35Þ

For sufficiently large D, the term with �gg will vanish and (35) will become the classical differential equation of
equilibrium. For the opposite case, for which D is sufficiently small, the term with ��� will vanish, and we get
the following asymptotic behavior:

rN / D�2 ð36Þ

Of course, (36) is a special case of (32) because, for a linear material, the strain hardening exponent n ¼ 1.
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2.4. Examples

It is instructive to verify the scaling law in (32) for the basic types of experiments. One important test is

that of micro-torsion. It was initially the size effect in this test (Fleck and Hutchinson, 1997) what motivated
the development of gradient plasticity.

An effective stress measure R may be defined as the work conjugate to E:

R ¼ dW ðEÞ
dE

ð37Þ

A simple power law relationship between R and E may be adopted;

R ¼ R0E
N ð38Þ

Compared with (15), one sees that N ¼ 1=n. For the analysis of size effect, the radius of the wire, D, may
be chosen as the characteristic dimension (size). The deformation is characterized by the twist per unit

length, j.
For geometrically similar structures of different sizes, we compare the nominal stresses corresponding to

the same dimensionless twist �jj ¼ jD. The nominal stress rN may be defined as T=D3, where T is the torque.

If the CS theory is used, one has

rN ¼ T
D3

¼ 6p
N þ 3

R0�jj
N 1

3

"8<: þ ‘CS
D

� �2
#ðNþ3Þ=2

� ‘CS
D

� �Nþ3
9=; ð39Þ

For ‘CS=D ! 1,

1

3

"
þ ‘CS

D

� �2
#ðNþ3Þ=2

� ‘CS
D

� �Nþ3

� N þ 3

2

D
3‘CS

� �2
‘CS
D

� �Nþ3

ð40Þ

from which

rN / D�N�1 ¼ D�ðnþ1Þ=n ð41Þ

2.5. Small-size asymptotic load–deflection response

For some special cases such as the pure torsion of a long thin wire or the bending of a slender beam, the

displacement distribution can be figured out by the arguments of symmetry and the relative displacement

profile remains constant during the loading process. For such problems, the asymptotic load–deflection
curve for a very small size D can be determined very easily (Ba�zzant, 2000, 2002).

For such loading, all the dimensionless displacements �uuk at all the points in a structure of a fixed geo-

metry increase in proportion to one parameter, w, such that �uuk ¼ wûuk where ûuk is not only independent of
D but also invariable during the proportional loading process. Parameter w may be defined as the dis-

placement norm, w ¼ k�uukk.
From (4)–(8), we know that

�EE ¼ wÊE ð42Þ

where ÊE is a function of dimensionless coordinates that does not change during the loading process when
size D is very small. Substituting this into the dimensionless constitutive law (22) and (23), we have

�rrik ¼ w1=nr̂rik; �ssijk ¼ w1=nŝsijk ð43Þ
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where r̂rik and ŝsijk are constant during the loading process if the size D is small enough. Thus the load fk can
now be expressed as a function of w as well as the size D. Since the first two terms on the left-hand side of

(24) are proportional, respectively, to the functions

w1=nDðn�1Þ=n; w1=nD�ðnþ1Þ=n ð44Þ

one reaches the conclusion that

�ffk / w1=n ð45Þ

For hardening materials, we have 1=n6 1. So the load deflection curve begins with a vertical tangent. We

conclude that the small-size asymptotic load–deflection response is similar to the stress-strain relation for

the macro-scale, except that the initial elastic response gets wiped out when D ! 0.

3. Scaling of mechanism-based strain-gradient plasticity

The first theory that was based on the consideration of geometrically necessary dislocations was the

mechanism-based theory of strain-gradient (MSG) plasticity (Gao et al., 1999a,b; Huang et al., 2000),

which is a generalization of the incremental theory of plasticity (Jir�aasek and Ba�zzant, 2002). The scaling of
that theory was analyzed in detail in Ba�zzant (2000, 2002). For the sake of comparison, Ba�zzant�s analysis will
now be briefly reviewed.

3.1. Formulation of MSG theory

In the MSG theory, the strain-gradient tensor gijk ¼ uk;ij, as well as its work-conjugate couple stress

tensor sijk, needs again to be introduced. However, sijk is defined in a multiscale framework rather than on
the basis of strain energy density (or the potential energy function). The constitutive relation reads:

rik ¼ Kdik�nn þ
2r
3�

�0ik; sijk ¼ l2�
K
6

gHijk

�
þ rUijk þ

r2
Y

r
Wijk

�
ð46Þ

where

Uijk ¼
1

�
ðKijk � PijkÞ; Wijk ¼ f ð�Þf 0ð�ÞPijk

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�0ij�

0
ij

r
; g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gijkgijk

p ð47Þ

and

Kijk ¼ 1
72
½2gijk þ gkji þ gkij � 1

4
ðdikgppj þ djkgppiÞ
; ð48Þ

Pijk ¼ ½�ikgjmn þ �jkgimn � 1
4

dik�jp
�

þ djk�ip
�
gpmn
�mn=54�2 ð49Þ

gHijk ¼ 1
4
ðdikgjpp þ djkgippÞ ð50Þ

Here K, elastic bulk modulus; �0ik ¼ �ik � ð1=3Þdik�nn, deviatoric strains; �ik ¼ ð1=2Þðui;k þ uk;iÞ, strains; �, g,

tensors consisting of components �ij; gijk; gHijk, volumetric (hydrostatic) part of gijk. The hardening of the

material is defined as r ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ð�Þ þ lg

p
, where rY, yield stress; r, �, stress and strain intensities; g, effective

strain gradient proportional to the density of geometrically stored dislocations (i.e., to lattice curvature or

twist); f ð�Þ, classical plastic hardening function, which reflects the effect of statistically stored dislocations
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and is an increasing function of a monotonically decreasing slope, 0 < f 0ð�Þ < 1. The material intrinsic

length l is similar to the parameter ‘CS used in Fleck et al. (1994) and Fleck and Hutchinson (1997) theories,
and it is defined by Gao et al. (1999a) as l ¼ 3a2ðG=rYÞ2b, where G ¼ shear modulus; a is an empirical

constant (usually ranging from 0.2 to 0.5); b is the magnitude of Burgers vector of edge or screw dislocation
(e.g., 0.255 nm for copper). Following Ba�zzant (2000, 2002) and similar to Eq. (2.3) of Fleck and Hutchinson
(1997), we can consider a more general hardening relation:

r ¼ rY½f qð�Þ þ ðlgÞp
1=q ð51Þ

with positive exponents p and q (Gao et al.�s theory corresponds to the case p ¼ 1, q ¼ 2); l� is the size of the
so-called ‘‘meso-scale cell’’ (introduced by Gao et al. to set up the higher-order stress tensor sijk and the

plastic work equality), which is the material length characterizing the transition from standard to gradient
plasticity and is interpreted by Gao et al. (1999a) as the minimum volume on which the macroscopic de-

formation contributions of the geometrically necessary dislocations may be smoothed out by a continuum.

l� is expressed by Gao et al. (1999a) as l� ¼ bLy ¼ bðG=rYÞb, where Ly is the mean spacing between the

statistically stored dislocations at yielding, and b is a constant experimental coefficient, suggested by Gao

et al. (1999a) to be between 1 and 10. The differential equations of equilibrium (Gao et al., 1999a,b) are the

same as (18), although the definitions of the stress, couple stress and load are different.

3.2. Dimensionless variables and scaling analysis

We will again use the dimensionless variables (19) and will further introduce

��� ¼ �; �gg ¼ gD; �rrik ¼ rik=rY; �ssijk ¼ sijk=ðrYlÞ; �rr ¼ r=rY ð52Þ

Since gHijk, Kijk and Pijk are defined by Gao et al. (1999a,b) as homogeneous functions of degree 1 of tensors

gijk and �ij, the following dimensionless variables (again labeled by an overbar) may be introduced:

�ggHijk ¼ gHijkD; �KKijk ¼ KijkD; Pijk ¼ PijkD
Uijk ¼ UijkD; Wijk ¼ WijkD

ð53Þ

The constitutive law may then be rewritten as:

�rrik ¼
K
rY

dik���nn þ
2�rr
3���

���0ik; �ssijk ¼
l2�
lD

K
6rY

�ggHijk

�
þ �rrUijk þ

1

�rr
�WWijk

�
ð54Þ

and the differential equations of equilibrium become

oi�rrik �
l
D
oioj�ssijk þ

rN

rY

�ffk ¼ 0 ð55Þ

Considering, same as before, the loading to consist solely of the body forces fk, we may again restrict

attention to homogeneous boundary conditions. For D=l ! 1, which also implies D=l� ! 1, all the

equations reduce to the standard formulation of incremental plasticity, with no size effect. The opposite

asymptotic behavior for D=l ! 0 is more interesting. From (51) we have �rr � ð�ggl=DÞp=q when D=l ! 0.

After substituting (54) into (55), we obtain the differential equations of equilibrium in the form:

oi
K
rY

dik���nn

24 þ 2

3���

l�gg
D

 !p=q

���0ik

35� l�
D

� �2

oioj
K
6rY

�ggHijk

24 þ l�gg
D

 !p=q

Uijk þ
D
l�gg

� �p=q

�WWijk

35 ¼ � rN

rY

�ffk ð56Þ

There are five terms on the left-hand side of this equation, and for D ! 0 they are, in sequence, of the order

of
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Oð1Þ; OðD�p=qÞ; OðD�2Þ; OðD�2�p=qÞ; OðD�2þp=qÞ ð57Þ
When D ! 0, the fourth term will in general be the dominant one and, in consequence, the asymptotic form

of the field equation will be:

oiojð�ggp=qUijkÞ ¼ v1�ffk; with v1 ¼ k�2 rN

rY

D
l

� �2þp=q

ð58Þ

where k ¼ l�=l, constant. Since D is present neither in the foregoing field equation nor the boundary

conditions (as they are homogeneous), the dimensionless displacement field as well as parameter v1 must be
size independent. This leads to the following small-size asymptotic scaling law (obtained by Ba�zzant, 2000,
2002);

rN ¼ rYv1k
2 l

D

� �2þp=q

; and for
p
q
! 1

2
: rN / D�5=2 ð59Þ

where the last expression corresponds to Gao et al.�s theory. As discussed by Ba�zzant (2000, 2002), the
asymptotic size effect given by (59) is curiously strong. It is 5 times stronger than that for similar LEFM

cracks on the macro-scale, which is rN / D�1=2, and 25 times stronger than the typical Weibull size effect,

which is roughly D�0:1.

There exists a special case in which Uijk ¼ 0 for all i, j, k. This case, which was not analyzed in Ba�zzant
(2000, 2002), occurs for micro-bending of a compressible material. In that case, the fourth term on the left-

hand side of (56) will vanish and so one cannot use (58) any more. Based on (57), the dominant term for
D ! 0 will then be the third one. Then the asymptotic form of the field equation will have the form:

oiojð�ggHijkÞ ¼ v2�ffk; with v2 ¼ 6k�2 rN

K
D
l

� �2

ð60Þ

By the same argument as before, parameter v2 is size independent. So, the small-size asymptotic scaling
law for this special case is:

rN ¼ K
6

v2k
2 l

D

� �2

or rN / D�2 ð61Þ

Another special case (not considered by Ba�zzant (2000, 2002)) arises for micro-bending of an incom-

pressible material (gHijk ¼ 0). Since again Uijk ¼ 0 for all i, j, k, both the fourth term and the third term in (56)

vanish. As seen in (57), the dominant term for D ! 0 will now be the fifth. The asymptotic form of the field
equation turns to be:

oiojð�gg�p=q �WWijkÞ ¼ v3�ffk; with v3 ¼ k�2 rN

rY

D
l

� �2�p=q

ð62Þ

Here the parameter v3 is again size independent, and so the small-size asymptotic scaling law for this special

case is:

rN ¼ rYv3k
2 l

D

� �2�p=q

and for
p
q
! 1

2
: rN / D�3=2 ð63Þ

3.3. Small-size asymptotic load–deflection response

As before, consider again the special cases in which the displacement distribution (or relative dis-

placement profile) remains constant during the loading, because of symmetry conditions. This for example
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occurs for torsion and bending. Consider the case of a torsion test of a long circular fiber, in which, by

arguments of symmetry, the tangential displacements must vary linearly along every radius. As stated

before, all the dimensionless displacements �uuk at all the points in a structure of arbitrary but fixed geometry
increase in proportion to a parameter w such that �uuk ¼ wûuk where ûuk is not only independent of D but also
invariable during the proportional loading process.

Since g and Uijk are homogeneous functions of degree 1 of both g and �, we may write �gg ¼ wĝg and

Uijk ¼ wbUUijk, where ĝg and bUU ijk are functions of dimensionless coordinates which do not change during the

loading process at any small enough size D.

First, let us focus on the case that the size D is sufficiently small (compared to the deflection w). Then the

small-size asymptotic forms (59), (61) and (63) still hold and the general case of asymptotic field equation

(59) may be rewritten as

oioj ĝgp=q bUU ijk

� �
¼ f̂fk; with f̂fk ¼ v1�ffkw

�1�p=q; v1 ¼ k�2 rN

rY

D
l

� �2þp=q

ð64Þ

From the field equation, it follows that if the relative displacement distribution (profile) ûuk is constant

during the loading process, as in pure bending of a slender beam or in torsion of a long cylinder, then the

body force distribution f̂fk at the small-size limit must be constant as well. Using (64), we see that

�ffk ¼ ðf̂fk=v1Þ w1þp=q or �ffk / w1þp=q ð65Þ
because f̂fk=v1 is constant during loading. Therefore, for the MSG theory, the asymptotic load–deflection
diagram is generally of the type:

�ffk / w3=2 ð66Þ
i.e., the slope is initially zero and then gradually increasing during loading.

However, a special consideration must be given to the case that not only D ! 0 but also w ! 0, i.e., the

beginning of the load–deflection diagram at D ! 0. For this limit case, we must start from the original

dimensionless field equation (56) rather than its asymptotic form. The five terms that are summed on the

left-hand size of (56) are proportional, respectively, to the functions

w; w=Dð Þp=q; w=D2; w1þp=q=D�p=q�2; w1�p=qDp=q�2 ð67Þ
For the MSG theory (p ¼ 1, q ¼ 2), these functions are

w; w=Dð Þ1=2; w=D2; w3=2=D�5=2; w1=2D�3=2 ð68Þ
and (56) leads to the expression

� rN

rY

�ffk ¼ a1wþ a2ðw=DÞ1=2 þ a3w=D2 þ a4w3=2D�5=2 þ a5w1=2D�3=2 ð69Þ

where parameters a1, a2, a3, a4 and a5 are independent of D and w, and are constant during loading. When

w=D is sufficiently large, the dominant term is a4w3=2D�5=2, which leads to (66) and the load–deflection curve

in Fig. 1(a). But when w=D is sufficiently small, the dominant term is a5w1=2D�3=2, and so

�ffk / w1=2 for w � D ð70Þ
Hence, the load–deflection curve at D ! 0 must begin with a vertical tangent (Fig. 1a and b). The load–

deflection curves for w � D and w � D (Fig. 1a) intersect at point w ¼ w0, which can be solved from

a4w
3=2
0 D�5=2 ¼ a5w

1=2
0 D�3=2, that is

w0 ¼ ða5=a4ÞD or w0 / D ð71Þ
Furthermore, in the special case that the fourth term and the third term in (56) vanish, (56) leads to the

expression
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� rN

rY

�ffk ¼ a1wþ a2ðw=DÞ1=2 þ a5w1=2D�3=2 ð72Þ

Obviously, when w and D are small, the dominant term will in that case be the fifth, regardless the relative

ratio of w=D, and so

�ffk / w1=2 for all w ð73Þ
Note that the load–deflection curves in (70) and (73) begin with a vertical tangent, i.e., the elastic part of

response is lost in the asymptotic case.

3.4. Examples

An explicit formula in terms of an integral can be easily obtained for the case of a circular fiber of radius

D subjected to torque T; see Eq. (35) in Huang et al. (2000). After transforming that formula to dimen-

sionless coordinates, one has (for p ¼ 1 and q ¼ 2):

rN ¼ T
D3

¼ rY

2p�jj
3

Z 1

0

�rr
���

q2

�(
þ l2�
12D2

�
þ l2�f ð���Þf 0ð���Þ

12D2�rr

)
qdq ð74Þ

where �jj ¼ �gg ¼ jD, dimensionless specific angle of twist; j is the actual actual specific angle of twist (ro-
tation angle per unit length of fiber). Taking the limit of rND5=2 for D ! 0, with rN given by the foregoing

expression, it can be readily checked that the small-size asymptotic form of this formula is

rN ¼ rY k2l5=2
p
18

Z 1

0

q
���
dq

� �
�jj3=2D�5=2 ð75Þ

This verifies the previous result in (59), as well as (66), with �jj playing the role of ŵw.
The numerical result of this example can be used to check our asymptotic-matching approximation (109).

Following Huang et al.�s (2000) assumption, the hardening relation used is a simple power law relation:

f ð�Þ ¼ E�
rY

� �N

ð76Þ

Here E is Young�s modulus and N is the plastic work-hardening exponent (06N < 1). In numerical
computations, N ¼ 0:2. The material length l is 4.896 lm. Another length parameter is l� which depends on
the choice of b, G ¼ 200rY, and in view of definition of l� (if b ¼ 1), l� is 51 nm. According to (75), s ¼ 5=2,
and from (109) one gets

r0 ¼ �jj0:2; D0 ¼ 78:74�jj0:12b0:8 ð77Þ

Fig. 1. Load–deflection curves for the general case of the MSG theory: (a) initial and final curves for very small but finite size D,

(b) asymptotic load–deflection curve for vanishing size D, and (c) asymptotic curve of load–deflection slope versus deflection, begin-

ning with a Dirac delta function spike.
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if b ¼ 1 and j ¼ 1. Parameter r is obtained by optimizing the fit of the data; r ¼ 7:1. Fig. 2 shows the

optimum fit that is obtained.

From (77), we know that the parameters D0 and r0 are not material properties, they depend on the

geometry, deformation, as well as the material constitutive relation.
Another special case for which an explicit formula in terms of an integral can be obtained is the bending

of ultra thin nickel beams, which was tested on nickel; see Eq. (29) in Huang et al. (2000). After trans-

formation to dimensionless coordinates, that formula (for p ¼ 1 and q ¼ 2) reads:

rN ¼ M
D2

¼ 2rY

Z 1=2

0

2ffiffiffi
3

p �rrq

"
þ �jjl2�f ð���Þf 0ð���Þ

9D2�rr

#
dq ð78Þ

where D is the beam depth, j is the bending curvature, and �jj ¼ �gg ¼ jD. Taking lim rND3=2 for D ! 0, one

finds that the small-size asymptotic form of this formula is

rN ¼ rY k2l3=2
2

9

Z 1=2

0

f ð���Þf 0ð���Þdq

� �
�jj1=2D�3=2 ð79Þ

Now we see that this formula is a special case of (63), as well as (73). As pointed out before, (63) applies

only to the cases in which the fourth and third terms on the left-hand side vanish. For micro-bending, this

condition can be verified analytically. From Eqs. (24) to (27) in Huang et al. (2000), it is easy to find that

Uijk ¼
1

�
ðKijk � PijkÞ ¼ 0; for any i; j; k ð80Þ

This means that the fourth term vanishes. Moreover, since the material is assumed to be incompressible, the

third term vanishes, too.

Using the same material constitutive relation, as well as the same values of l and l�, the numerical results
for micro-bending are fit as shown in Fig. 3. According to (79), s ¼ 3=2. The fit is optimum if r is set to be

10.4, and the parameters r0 and D0 are

r0 ¼ 0:236�jj0:2; D0 ¼ 5:305�jj�2=30b4=3 ð81Þ

Fig. 2. Gao et al.�s (1999a,b) numerical solution of size effect in micro-torsion based on their MSG theory with b ¼ 1 (data points), and

its optimum fit with the proposed asymptotic matching formula (109) based on the presently determined small-size asymptote of that

theory (power law of exponent )5/2).
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3.5. Discussion

In MSG theory, two extra length parameters are introduced––the material length l and the meso-scale

cell size l�. The material length l is said to be a material property, characterized by the empirical constant a.
The presence of l is dictated by dimensional consistency, because of the strain gradient (a similar parameter,
‘CS, was also introduced in both Fleck and Hutchinson�s theories).

The second length parameter l� defines the size of the meso-scale cell, which is needed to express the

couple stress tensor sijk and the plastic work equality. According to the definition, l� is proportional to the

constant experimental coefficient b. According to Gao et al. (1999a) and Huang et al.�s (2000) suggestion,
parameter b can be between 1 and 10. Then it is interesting to mention that the couple stress sijk depends on
b (see (46)). Since gijk is independent of l�, as well as b, we know that sijk should be proportional to b2. But,

at the same time, rik is independent of b, as seen in (46).

So the value of b needs to be determined by fitting experimental data. However, as Huang et al. (2000)
oberved, ‘‘the meso-scale cell size l� has little effect on the global physical quantities, although it can affect

the local deformation field’’. In the case of micro-torsion, the results for b ¼ 1 and 10 are almost the same

as those for the range of available test data (Fig. 4). This is also true for micro-bending (Fig. 5). So the

question arises: Why the couple stress is needed at all when it is found that the couple stress does not affect

the global physical quantities?

To answer this question, let us look first where the couple stress comes from. In Gao et al.�s multiscale
framework, the stress and strain on the micro-scale (denoted as ~rr and ~��) obey the Taylor hardening re-

lation:

~rr ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ð~��Þ þ lg

p
ð82Þ

The micro-scale and meso-scale are linked by the plastic work equality:Z
Vcell

~rrik~��ik dV ¼ ðrikd�ik þ sijkdgijkÞVcell ð83Þ

To obtain the constitutive relation, the micro-scale strain in the meso-scale cell is assumed to be linearly
distributed:

Fig. 3. Gao et al.�s (1999a,b) numerical solution of size effect in micro-bending based on their MSG theory with b ¼ 1 (data points),

and its optimum fit with the proposed asymptotic matching formula (109) based on the presently determined small-size asymptote of

that theory (power law of exponent )3/2).
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d~��ij ¼ d�ij þ
1

2
ðdgkij þ dgkjiÞxk ð84Þ

Then the stress rik can be computed as follows:

rik ¼
1

Vcell

Z
Vcell

~rrik dV ð85Þ

If the entire system is subdivided into many meso-scale cells to allow numerical integration, we find from

(84) and (85) thatX
All cells

Z
Vcell

~rrik~��ik dV �
X

All cells

rik�ikVcell ð86Þ

Fig. 4. Size effect plots of the exact solution for micro-torsion based on the Gao et al.�s MSG theory, for different value of parameter b.

Fig. 5. Size effect plots of the exact solution for micro-bending based on the Gao et al.�s MSG theory, for different value of parameter b.
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This formula means that the plastic work can be balanced over the entire system even without being

balanced in every cell. Thus there appears to be no practical advantage in introducing the couple stress sijk
because the plastic work balance in the meso-scale cell need not be considered.

In this regard, it should further be noted that when the couple stress sijk is introduced, it is impossible in
this theory to define a strain energy density function W ¼ W ð�; gÞ such that r ¼ oW =o� and s ¼ oW =og
(Gao et al., 1999a). The reason is that the constitutive equations of MSG theory do not satisfy the reci-

procity relation

orij

ogkmn
6¼ oskmn

o�ij
ð87Þ

This implies that the introduction of sijk is theoretically disadvantageous.
The effect of b is quite large. If b ¼ 0, the MSG will change totally. The case b ¼ 0 means that l� ¼ 0, and

according to the constitutive equation (46), sijk will be zero. In other words, there will be no couple stress

anymore. Thus the field equation (18) simplifies because the second term on the left-hand side can be

omitted, and turns to be the same as that for classical plasticity.

First let us discuss the effect of this simple function on the asymptotic behavior. From (56), we know the

last three terms on the left-hand side of (56) will vanish (actually, they stem from the vanished term of the

field equation (18)). Thus, for D ! 0, the dominant term will be the second one. So the asymptotic form of

the field equation reads:

oi �ggp=q
���0ijk
���

0@ 1A ¼ v4�ffk; with v4 ¼ � 3

2

rN

rY

D
l

� �p=q

ð88Þ

As before, v4 must be size independent. Thus when b ¼ 0, the small-size asymptotic scaling law for MSG

theory turns out to be:

rN ¼ �rYv4
l
D

� �p=q

ð89Þ

According to Gao et al.�s theory, p=q ¼ 1=2, and so

rN / D�1=2 ð90Þ
We conclude that, upon setting b ¼ 0, the asymptotic scaling becomes more reasonable.

The change in asymptotic scaling will of course affect the approximate asymptotic matching formula.

According to (90), for b ¼ 0, the parameter s should be 1/2. The numerical results for the case of micro-

torsion and micro-bending are now both fit using b ¼ 0. It is interesting that the parameter r, which would

normally be determined by optimum data fitting, is exactly 1 in both examples (the error is within 0.02%,

see Figs. 6 and 7). This result is true for other values of �jj and other kinds of examples. So the approxi-

mation formula can be written in the following simpler form:

rN ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D0

D

r
ð91Þ

where the parameters r0 and D0 can also be computed according to (110), with s ¼ 1=2.
When b ¼ 0, the small-size asymptotic load–deflection response will also become simpler. Obviously,

only the first two terms in (67) will appear because the last remaining three terms will vanish. Then, when D

and w are both sufficiently small, the dominant term will be the second one, ðw=DÞp=q, because p=q6 1.

Hence,

�ffk / wp=q ð92Þ
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Similar to (70) and (73), the elastic part of response asymptotically disappears.

3.6. Tests of micro-hardness

Gao et al. (1999b) showed that the test results for Rockwell micro-hardness tests of copper can be well

approximated as

rN ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ h�

D

r
ð93Þ

where D, depth of indentation; and h�, A, H0, empirical constants. This formula, however, is purely
empirical. The same data can be also fit very well using another formula, the asymptotic matching

Fig. 6. Gao et al.�s (1999a,b) numerical solution of size effect in micro-torsion based on the special case of MSG theory for b ¼ 0

(equivalent to TNT theory), and its optimum fit with the proposed asymptotic matching formula (91) based on the small-size

asymptotic power law of exponent )1/2.

Fig. 7. Gao et al.�s (1999a,b) numerical solution of size effect in micro-bending based on the special case of MSG theory for b ¼ 0

(equivalent to TNT theory), and its optimum fit with the proposed asymptotic matching formula (91) based on the small-size

asymptotic power law of exponent )1/2.
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formula (109) given later, where s is set as 2.5 to fit Gao et al.�s MSG theory (Fig. 8). For s ¼ 1=2, formula

(109) becomes identical to the last equation (which, by coincidence, happens to have the same form as the
formula for the deterministic size effect due to a boundary layer of distributed cracking in flexure of un-

reinforced concrete beams; Ba�zzant and Planas, 1998).

4. Scaling of Taylor-based nonlocal theory of plasticity

Similar to observation in Ba�zzant (2000, 2002) and the present discussion, Gao et al. (1999a) and Huang

et al. (2000) also found that the use of couple stress sijk offers no advantage and causes an unnecessary

complication in the MSG theory. Realizing this, they soon modified the MSG theory by removing the

couple stress and named the modification as the ‘‘TNT of plasticity’’. The strain gradient gijk is in the TNT
theory treated by a nonlocal approximation (Gao and Huang, 2001).

4.1. Formulation of TNT theory

In TNT theory, the strain gradient is introduced as an integral-type nonlocal variable. To this end, Gao

and Huang (2001) expand the strain component �ij into Taylor series in the neighborhood of point x

�ijðxþ nÞ ¼ �ijðxÞ þ �ij;mnm þOðjnj2Þ ð94Þ
where n denotes a local coordinate centered at x. Then they multiply this expression with nk over the volume

of a small representative cell Vcell which contains x and is sufficiently small,Z
Vcell

�ijðxþ nÞnk dV ¼ �ijðxÞ
Z
Vcell

nk dV þ �ij;m

Z
Vcell

nknm dV ð95Þ

Therefore, the gradient term �ij;k can be approximated by an integral of strain �

�ij;k ¼
Z
Vcell

½�ijðxþ nÞ � �ijðxÞ
nm dV
Z
Vcell

nknm dV
� ��1

ð96Þ

Fig. 8. Data points measured in micro-indentation test of McElhaney et al. (1998), compared to optimum fit with the proposed

asymptotic matching formula (109) based on the presently determined small-size asymptote of MSG theory, representing a power law

of exponent )5/2.
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If Vcell is a cube centered at x,

�ij;k ¼
1

I�

Z
Vcell

�ijnk dV with I� ¼
Z
Vcell

n21 dV ¼ 1

12
l5� ð97Þ

Thus the strain gradient gijk, defined as uk;ij, can be treated as a nonlocal variable:

gijk ¼
1

I�

Z
Vcell

½�iknj þ �jkni � �ijni
dV ð98Þ

Using this formula, one can easily define gH, g0 and the effective strain gradient g ¼ ð1=2Þðg0
ijkg

0
ijkÞ

1=2
, which

is the same as that defined in the MSG theory. For cells of other shapes and for points near the boundary,

the general form (96), rather than (97), should of course be used to define the nonlocal variable g.
The constitutive relation of TNT theory can be written as:

rik ¼ Kdik�nn þ
2r
3�

�0ik ð99Þ

where

r ¼ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ð�Þ þ lg

p
ð100Þ

Although this expression for stress intensity r is similar to that used in the MSG theory (Eq. (51) for p ¼ 1,

q ¼ 2), rY is replaced by rref , representing any reference stress in uniaxial tension. The choice of rref will
affect the value of the corresponding material length l (Gao and Huang, 2001, however, show the con-

stitutive equation of the TNT theory to be independent of the choice of rref ). Similarly to the MSG theory,

we can also consider a more general relation here: r ¼ rref ½f qð�Þ þ ðlgÞp
1=q with arbitrary positive expo-

nents p and q (Gao et al.�s TNT theory corresponds to the case p ¼ 1, q ¼ 2).

Obviously the constitutive equation is similar to that of the MSG theory, although the effective strain

gradient is now defined as a nonlocal variable, and the couple stress has disappeared. If we set b ¼ 0, we can

find that the TNT theory is almost the same, except that, in the TNT theory, the strain gradient is defined as

a nonlocal variable. So the size effect analysis of the TNT theory will be similar to that in Section 3.5.
The only major difference between the TNT theory and the classical plasticity theory is that the con-

stitutive equation of the TNT theory is nonlocal and size-dependent (because an intrinsic material length l is

involved). The differential equation of equilibrium of the TNT theory is the same as the classical one, i.e.

rik;i þ fk ¼ 0.

4.2. Size effect analysis

It can be shown that the integral in (97) is in fact equivalent to a finite difference representation of a
derivative of �ij (Gao and Huang, 2001). So we define dimensionless variables similar to (19) and (20):

�xxi ¼ xi=D; �uui ¼ ui=D; ���ij ¼ �ij; �ggijk ¼ gijkD; ��� ¼ � ð101Þ

�gg ¼ gD; �rrik ¼ rik=rref ; �rr ¼ r=rref ; �ffk ¼ fkD=rN ð102Þ
The derivatives with respect to dimensionless coordinates �xxi are again denoted as oi ¼ o=o�xxi. The constit-
utive law of the TNT theory may now be rewritten as:

�rrik ¼
K

rref

dik���nn þ
2�rr
3���

���0ik ð103Þ

and the differential equations of equilibrium transform as

oi�rrik þ
rN

rref

�ffk ¼ 0 ð104Þ
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Restricting attention, as before, to the loading in the form of body forces, we may again avoid the

formulation of boundary conditions, considering them as homogeneous.

For l=D ! 0, the constitutive equation (99) of the TNT theory turns out to be the same as in the classical

plasticity theory, in which there is no size effect.
The opposite asymptotic behavior for D=l ! 0 is a little more complex. From (51) we have �rr � ð�ggl=DÞp=q

when D=l ! 0. After substituting (103) into (55), we obtain the differential equations of equilibrium in the

form

oi
K
rY

dik���nn

24 þ 2

3���

l�gg
D

 !p=q

���0ik

35 ¼ � rN

rY

�ffk ð105Þ

When D ! 0, the second term on the left hand side will dominate, and so the asymptotic form of the field

equation is:

oi �ggp=q
���0ijk
���

0@ 1A ¼ v�ffk; with v ¼ � 3

2

rN

rY

D
l

� �p=q

ð106Þ

where v is a size independent constant. Thus the small-size asymptotic scaling law for the TNT theory turns

to be, in general, rN ¼ �rYvðl=DÞp=q, and according to Gao et al.�s theory (p=q ¼ 1=2):

rN / D�1=2 ð107Þ

4.3. Small-size asymptotic load–deflection response

The small-size asymptotic load–deflection response of the TNT theory is also the same as the case of b ¼
0 in MSG theory. When D and w are both sufficiently small, the dominant term on the left-hand side of

(105) will be the second one; hence, in general, �ffk / wp=q and, for Gao et al.�s theory:

�ffk / w1=2 ð108Þ
Again, the elastic response is missing in the asymptotic case.

5. Asymptotic-matching approximation

The small-size asymptotic scaling law established in Ba�zzant (2000, 2002) for the MSG theory, and here

for the MSG and Fleck and Hutchinson�s theories, can be closely approached when the cross-section size of
a metallic specimen is reduced to about 10 nm. This size is of course too small for these theories to be valid.

A realistic theory for such a small size would have to take into account the surface energy and surface
tension effects, and it would have to be based on an interatomic potential. Does it mean that the asymptotic

scaling laws that have been established are only of academic interest? Certainly not, for three reasons.

One reason simply is that a theory that implies an unreasonable asymptotic size effect should better be

avoided. For the scaling of nominal stress, power laws with exponents )5/2 or )2 would in principle be

impossibly strong, far stronger than any known size effects in solid mechanics. Even a power law with the

exponent �ðnþ 1Þ=n, which could typically be about )1.3, seems to be somewhat too strong.

The second reason is that knowledge of two opposite asymptotic behaviors, normally those for the large

and small scales, makes it possible to benefit from asymptotic matching. Asymptotic matching is a broad
term for mathematical techniques that yield approximate solutions for the practical length or size range of

interest in which the solution is much harder than it is the adjacent asymptotic ranges. The earliest example

5652 Z.P. Ba�zzant, Z. Guo / International Journal of Solids and Structures 39 (2002) 5633–5657



of asymptotic matching is the boundary layer theory in fluid mechanics, conceived by Prandtl (1904). Ever

since, the asymptotic matching has been pursued systematically in fluid mechanics (Bender and Orszag,

1978; Barenblatt, 1979; Hinch, 1991), but in the solid mechanics community this technique has not been

exploited until the recent researches of size effect (Ba�zzant, 1997, 1999).
The third reason is the gradual transition of response to the asymptotic one. For example, we found the

small-size asymptotic load–deflection diagram for the MSG theory to have a positive curvature, which is

unreasonable. Therefore, as the size is reduced from, say, D ¼ 100–0.1 lm, one must expect the curvature of
this diagram to change gradually from a large negative value to a small negative value, and then to a small

positive value. The comparisons of the MSG theory with experiments, exhibited in Gao et al. (1999a,b),

demonstrate this kind of transition and one may note that, for the smallest sizes tested (about 1 lm), the
theory predictions for micro-bending are too soft at small stress and too stiff at large stress, compared to

test data.
In the special case of scaling laws for geometrically similar bodies, the asymptotic matching is much

simpler than it is in fluid mechanics. It does not necessitate any solution of differential equations, in contrast

to the boundary layer theory. Rather, it suffices to find a simple and smooth formula that has the required

small-size and large-size asymptotic properties. This simple kind of asymptotic matching has been sys-

tematically pursued with success during the last two decades for the purpose of establishing size effect laws

for various types of failure of quasibrittle materials––first for concrete, and rocks, and more recently for sea

ice and fiber composites (Ba�zzant and Planas, 1998; Ba�zzant and Chen, 1997; Ba�zzant and Nov�aak, 2000;
Ba�zzant, 1984, 1997, 1999). A similar approach was suggested in Ba�zzant (2000, 2002) to be taken for the
gradient plasticity of metals on the micrometer scale. Solving this problem for the practical range of interest

(0.1–100 lm) would be hard but the asymptotic cases are easy to determine for all the available theories, as

shown in Ba�zzant (2000, 2002) and in this paper.

In the present case, the asymptotic matching approach calls for a formula that yields a smooth transition

between the case of no size effect for D ! 1 and the case of power law rN / D�s for D ! 0 (s > 0).

Perhaps the simplest formula with these properties is

rN ¼ r0 1

"
þ D0

D

� �2s=r
#r=2

ð109Þ

where r is a constant, which determines how slow the transition is. The larger is r, the slower is the

transition. For the case of the MSG theory, s ¼ 5=2 (Ba�zzant, 2002) or 2, or 3/2; for Fleck et al.�s theories,
s ¼ ðnþ 1Þ=n; and for the TNT theory, s ¼ 1=2. The parameters r0 and D0 can be determined as follows

r0 ¼ lim
D=l!1

rN; D0 ¼ lim
D=l!0

rNDs

r0

� �" #1=s
ð110Þ

Parameter r, which controls the slowness of the transition, and it must be calibrated by experiments or

numerical simulations.

6. Comparison of asymptotic scaling laws

6.1. Asymptotic behavior

For Fleck and Hutchinson�s CS and SG theories, we have

rN / D�r; r ¼ nþ 1

n
ð1 < r6 2Þ ð111Þ
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For the MSG theory, we have

rN / D�s s ¼ 5
2
in general; s ¼ 2 or 3

2
in special cases ð112Þ

and if, as suggested in Ba�zzant (2000, 2002) and again here, b ¼ 0, then s ¼ 1=2.
For the TNT theory, we have (with p=q ¼ 1=2):

rN / D�1=2 ð113Þ

6.2. Small-size asymptotic load–deflection response

For Fleck and Hutchinson�s CS and SG theories, we have

�ffk / w1=n; 1=n6 1 ð114Þ
where n is the strain hardening exponent.

For the MSG theory, in general, we have

�ffk / w3=2 and �ffk / w1=2; for w � D ð115Þ
In some special cases, though, the scaling can be �ffk / w1=2 regardless of the value of w=D.

For the TNT theory, we have �ffk / wp=q, and for Gao et al.�s formulation (p=q ¼ 1=2):

�ffk / w1=2 ð116Þ
Note again that the elastic part of response asymptotically vanishes for (115) and (116).

6.3. Linkage between the small-size asymptotic behavior and the constitutive relation for the macro-scale

In the MSG and TNT theories, the small size asymptotic behaviors are determined by micro-scale

material parameters which are independent of the macro-scale material parameters. However, in Fleck and

Hutchinson�s theories, the small-size asymptotic behavior is determined solely by macro-scale material

parameters, which might be a somewhat questionable aspect of these theories.

6.4. Existence of strain energy density function

An advantage of Fleck and Hutchinson�s CS and SG theories is that the strain energy density function

exists. It is defined as a function of the so-called ‘‘combined strain quantity’’ E, which in turn is a variable

depending on � and g.

For the MSG theory, the strain energy density function does not exist because the reciprocity relation is

not met; see (87).

For the TNT theory, the strain energy density function can be defined according to its constitutive

equation (99) in a way similar to the classical theory of plasticity. The difference is that the hardening is
defined as a function of the nonlocal strain.

7. Scaling of plastic hardening modulus in Acharya and Bassani’s gradient theory

Finally, a brief look at the theory of Acharya and Bassani (2000) and Bassani (2001) is appropriate.

These authors developed a simple gradient theory which differs significantly from the previous four the-

ories. It is a generalization of the classical incremental theory of macro-scale plasticity, rather than the
deformation (total strain) theory. In contrast to the previous four theories, in which the strain-gradient
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tensor g is defined as a third-order tensor representing the gradient of total strain, the lattice incompatibility

is measured by a second-order tensor defined by the following contraction of the gradient of plastic strain

�pij:

aij ¼ ejkl�
p
il;k ð117Þ

where ejkl is the alternating symbol. The plastic hardening is assumed to be governed by the invariant:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2aijaji

p
ð118Þ

Then the basic equations of the classical J2 flow theory are modified as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffi
r0
ijr

0
ij

2

r
¼ scr; _ss ¼ _sscr ¼ hðcp; aÞ _ccp ð119Þ

_��pij ¼
_ccp

2s

 !
r0
ij; _rrij ¼ Cijklð _��kl � _��pklÞ; cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�pij�

p
ij

r
ð120Þ

The variables used in the above are almost the same as in the classical J2 flow theory except that the in-

stantaneous hardening-rate function h depends not only on plastic strain invariant cp but also on a. The
following hardening function hðcp; aÞ is used by Bassani (2001) for numerical simulation of the micro-
torsion test:

hðcp; aÞ ¼ h0
cp

c0

�
þ 1

�N�1

1

"
þ l2ða=c0Þ

2

1þ cðcp=c0Þ
2

#1=2
ð121Þ

where l is a material length introduced for dimensionality reasons, and h0, c0, c and N are further material

constants (all positive).

Although a full analysis of scaling of this theory is beyond the scope of this paper, some simple ob-

servations can be made. From the scale transformations �uui ¼ ui=D, ���il;k ¼ �il;kD, it follows that aij ¼ �aaij=D,
where the overbars again denote the dimensionless variables. Since �ccp ¼ cp, the plastic hardening modulus
defined by (121) scales for D ! 0 as

hðcp; aÞ ¼ h0
cp

c0

�
þ 1

�N�1

½1þ cðcp=c0Þ
2
�1=2 �aa

c0

l
D

/ D�1 ð122Þ

This means that, at the same strain level, the slope of the plastic hardening curve increases as D�1 when

D ! 0. When the plastic strain becomes much larger than the elastic strain, and when the strain distri-

butions and history are similar, then of course the nominal stress rN must also scale asymptotically as D�1.
This is again a curiously strong asymptotic size effect, not much less strong than that found for the MSG

and CS theories. Even though this excessive size effect is approached only outside the range of applicability

of the theory, one must expect that it would impair the representation of test data in the middle range of

practical interest.

The excessive asymptotic size effect could be avoided by redefining the plastic hardening modulus in

(121) as follows:

hðcp; aÞ ¼ h0
cp

c0

�
þ 1

�N�1

1

"
þ la=c0
1þ cðcp=c0Þ

#1=2
ð123Þ

With this revision, which should be checked against test data, the asymptotic scaling would become

hðcp; aÞ / D�1=2 when D ! 0 ð124Þ
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which seems more reasonable and similar to Ba�zzant�s (2000) proposal for revision of MSG theory, as well as

to the TNT theory.

8. Summary and conclusions

(1) The approach introduced by Ba�zzant (2000, 2002) for determining the asymptotic properties of Gao
et al.�s (1999a,b) MSG theory of metal plasticity is now applied to Gao and Huang�s (2001) newer theory,
the TNT, and to Fleck and Hutchinson�s (1993, 1997) theories, the original gradient theories of metal
plasticity on the micrometer scale. The small-size asymptotic scaling laws and load–deflection diagrams of

these two theories are determined. Furthermore, Ba�zzant�s (2000, 2002) asymptotic analysis of the MSG

theory is extended to two special cases with atypical asymptotic scaling.

(2) The small-size asymptotic scaling laws for the nominal stress rN in all the existing theories are power

laws, but there are wide disparities among them. For the MSG theory, Ba�zzant (2000, 2002) showed that, in
general, rN / D�5=2, which is an unreasonably strong size effect. For two special cases of the MSG theory it

is shown here that rN / D�2 and D�3=2, which is also very strong. For the classical Fleck and Hutchinson

CS and SG theories, it is found that rN / D�ðnþ1Þ=n (where n is the exponent of the strain hardening law on
the macro-scale); typically, rN / D�1:3, which is also quite strong. For the TNT theory (as well as for the

modification of the MSG theory proposed in Ba�zzant, 2000, 2002), rN / D�1=2, which seems reasonable.

(3) The small size asymptotic load–deflection diagram of the MSG theory was shown in Ba�zzant (2000,
2002) to be a power law of the type rN / w3=2 (w is the deflection). The fact that the slope of this diagram is

initially horizontal and then increases, rather then decreases, is unrealistic. For the Fleck and Hutchinson

theories, it is shown here that rN / w1=n, which is typically about w1=2 and is reasonable overall, except that

the initial slope is vertical (i.e., the initial stiffness is infinite, elasticity vanishes). The same result, rN / w1=2,

is obtained here for the TNT theory.
(4) Although the small-size asymptotic behavior is closely approached only at sizes much smaller than

the range of applicability of the strain-gradient theories of plasticity (which is about 0.1–100 lm), the
knowledge of this behavior is useful for developing asymptotic matching approximations for the realistic

middle range.

(5) A simple asymptotic formula for the asymptotic matching of the small-size and large-size behaviors,

proposed in Ba�zzant (2000, 2002) for the MSG theory, is here extended to the other theories and is shown to

provide good approximations of the experimental as well numerical results for the middle range. The

availability of such formulae means that the stress analysis for the middle range, which is much more
difficult than the asymptotic analysis, can be avoided. Such an approach, however, is possible only if the

small-size asymptotic behavior is realistic. This is for example documented by the fact that, for the MSG

theory, the response for sizes under 1 lm is somewhat too soft at small deflections and too stiff at large

deflections, and that the size effect at the lower limit of the range of experiments is excessive. The detri-

mental consequence of unrealistic small-size asymptotic properties is that the possibility of asymptotic

matching approximations is lost.

(6) The plastic hardening modulus in the theory of Bassani and Acharya scales asymptotically as D�1,

which also seems excessive. However, a simple modification can achieve the scaling to be D�1=2.

Acknowledgement

Partial support under US National Science Foundation Grant CMS-9732791 to Northwestern Uni-
versity is gratefully acknowledged.

5656 Z.P. Ba�zzant, Z. Guo / International Journal of Solids and Structures 39 (2002) 5633–5657



References

Acharya, A., Bassani, J.L., 2000. Lattice incompatibility and a gradient of crystal plasticity. J. Mech. Phys. Solids 48, 1565–1595.

Bender, M.C., Orszag, S.A., 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (Chapters

9–11).

Barenblatt, G.I., 1979. Similarity, Self-similarity and Intermediate Asymptotics. Consultants Bureau, New York, NY.

Bassani, J.L., 2001. Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49, 1983–1996.

Ba�zzant, Z.P., 1984. Size effect in blunt fracture: concrete, rock, metal. J. Engng. Mech., ASCE 110 (4), 518–535.

Ba�zzant, Z.P., 1997. Scaling of quasibrittle fracture: asymptotic analysis. Int. J. Fract. 83 (1), 19–40.

Ba�zzant, Z.P., 1999. Size effect on structural strength: a review. Arch. Appl. Mech. (Ingenieur-Archiv, Springer Verlag) 69, 703–725.

Ba�zzant, Z.P., 2000. Scaling of dislocation-based strain-gradient plasticity. Theoretical and Applied Mechanics Report 00-12/C699s,

Northwestern University.

Ba�zzant, Z.P., 2002. Asymptotic scaling of dislocation-based strain-gradient plasticity. J. Mech. Phys. Solids. 50, 435–448.

Ba�zzant, Z.P., 2002. Scaling of Structural Strength. Hermes–Penton, London.
Ba�zzant, Z.P., Chen, E.-P., 1997. Scaling of structural failure. Appl. Mech. Rev. ASME 50 (10), 593–627, translated in Advances in

Mechanics (China) 29 (3) 383–433.

Ba�zzant, Z.P., Nov�aak, D., 2000. Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect: I. Theory and II.

Application. J. Engng. Mech. ASCE 126 (2), 166–174, 175–185.

Ba�zzant, Z.P., Planas, J., 1998. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Bocca Raton, FL and

London.

Cottrell, A.H., 1964. Theory of Crystal Dislocations. Gordon and Breach, New York.

Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41,

1825–1857.

Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advances in Applied

Mechanics, vol. 33. Academic Press, New York, pp. 295–361.

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient plasticity: theory and experiment. Acta Metall.

Mater. 42, 475–487.

Gao, H., Huang, Y., 2001. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 38, 2615–2637.

Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., 1999a. Mechanism-based strain gradient plasticity––I. Theory. J. Mech. Phys.

Solids 47, 1239–1263.

Gao, H., Huang, Y., Nix, W.D., 1999b. Modeling plasticity at the micrometer scale. Naturwissenschaften 86, 507–515.

Hirth, J.P., Lothe, J., 1982. Theory of Dislocation. Wiley, New York.

Hinch, K., 1991. Perturbation Methods. Cambridge University Press, Cambridge, UK.

Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W., 2000. Mechanism-based strain gradient plasticity––II. Analysis. J. Mech. Phys.

Solids 48, 99–128.

Hutchinson, J.W., 1997. Linking scales in mechanics. In: Karihaloo, B.L., Mai, Y.-W., Ripley, M.I., Ritchie, R.O. (Eds.), Advances in

Fracture Research. Pergamon Press, New York, pp. 1–14.

Jir�aasek, M., Ba�zzant, Z.P., 2002. Inelastic Analysis of Structures. Wiley, New York.

Kiser, M.T., Zok, F.W., Wilkinson, D.S., 1996. Plastic flow and fracture of a particulate metal matrix composite. Acta Mater. 44 (9),

3465–3476.

Lloyd, D.J., 1994. Particle reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39, 1–23.

Mindlin, R.D., 1965. Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438.

Nye, J.F., 1953. Some geometrical relations in dislocated crystals. Acta Metall. Mater. 1, 153–162.

Prandtl, L., 1904. Uber die Fl€uussigkeitsbewebung bei sehr kleiner Reibung, Verhandlungen, III. Int. Math.-Kongr., Heidelberg,

Germany.

Toupin, R.A., 1962. Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414.

Weertman, J., Weertman, J., 1964. Elementary Dislocation Theory. Macmillan, New York.

Z.P. Ba�zzant, Z. Guo / International Journal of Solids and Structures 39 (2002) 5633–5657 5657


	Size effect and asymptotic matching approximations in strain-gradient theories of micro-scale plasticity
	Introduction
	Scaling of Fleck and Hutchinson&rsquo;s strain-gradient plasticity
	Fleck and Hutchinson&rsquo;s formulation
	Dimensionless variables
	Scaling and size effect
	Examples
	Small-size asymptotic load-deflection response

	Scaling of mechanism-based strain-gradient plasticity
	Formulation of MSG theory
	Dimensionless variables and scaling analysis
	Small-size asymptotic load-deflection response
	Examples
	Discussion
	Tests of micro-hardness

	Scaling of Taylor-based nonlocal theory of plasticity
	Formulation of TNT theory
	Size effect analysis
	Small-size asymptotic load-deflection response

	Asymptotic-matching approximation
	Comparison of asymptotic scaling laws
	Asymptotic behavior
	Small-size asymptotic load-deflection response
	Linkage between the small-size asymptotic behavior and the constitutive relation for the macro-scale
	Existence of strain energy density function

	Scaling of plastic hardening modulus in Acharya and Bassani&rsquo;s gradient theory
	Summary and conclusions
	Acknowledgements
	References


